
Sandboxing the Cyberspace for Cybersecurity Education

and Learning

Stylianos Karagiannis1[0000-0001-9571-4417], Emmanouil Magkos1[0000-0002-5922-4274]

Christoforos Ntantogian1[0000-0002-1575-4572] and Luís L. Ribeiro2

1 Department of Informatics, Ionian University, Plateia Tsirigoti 7, 49100, Corfu, Greece

{skaragiannis,emagos,dadoyan}@ionio.gr
2 PDM&FC, R. Fradesso da Silveira, 4-1B, 1300-609 Lisboa, Portugal

{luis.ribeiro}@pdmfc.com

Abstract. Deploying the appropriate digital environment for conducting cybersecurity

exercises can be challenging and typically requires a lot of effort and system resources.

Usually, for deploying vulnerable webservices and setting up labs for hands-on

cybersecurity exercises to take place, more configuration is required along with

technical expertise. Containerization techniques and solutions provide less overhead

and can be used instead of virtualization techniques to revise the existing approaches.

Furthermore, it is important to sandbox or replicate existing systems or services for the

cybersecurity exercises to be realistic. To address such challenges, we conducted a

performance evaluation of some of the existing deployment techniques to analyze their

benefits and drawbacks. We tested techniques relevant to containerization or

MicroVMs that include less overhead instead of the regular virtualization techniques to

provide meaningful and comparable results from the deployment of scalable solutions,

demonstrating their benefits and drawbacks. Finally, we presented a use case for

deploying cybersecurity exercises that requires less effort and moderate system

resources and an approach for monitoring the progress of the participants using a host-

based intrusion system.

Keywords: Cybersecurity, Docker, Sandbox, Security Labs, Cyber Range

1 Introduction

Designing and deploying effective cybersecurity labs requires a combination of various

technologies which usually include a lot of effort for the deployment of effective

cybersecurity exercises. For computer security students to benefit from hands-on

experiences, a large variety of security tools must be used, making difficult and time-

consuming the task of properly designing and deploying the exercises [1, 2, 3]. Creating

authentic computer security scenarios has been identified in the past as a very

demanding and challenging task, requiring much effort from the instructor and the lab

personnel. Virtualization technologies provide beneficial ways for hosting multiple

machines within one single system, decreasing the required deployment effort and

system resources, enhancing the instructor’s ability to deploy complex scenarios for

education purposes [4]. Our purpose is to create a flexible and portable solution without

requiring any existing deployed infrastructure and to deploy multiple systems for

mailto:skaragiannis

2

conduct security testing that includes complex processes such as adversary emulations

and incident response. Existing cybersecurity exercises are usually deployed using

virtualization and restrict the learning processes without maintaining significant

interactions between the deployed services (e.g. interactions between Intrusion

detection systems, adversaries, and the usage of Elastic Search). Not only this but

virtual machines include a lot of overhead and a high demand in system resources for

deploying relevant services that are required by the exercises. On the other hand,

containers have several advantages [5, 6, 7, 8]. The performance that containers have,

comes with the cost of providing less isolation than virtual machines. Restrictions also

apply in terms of compatibility for deploying kernelless operating systems using

containerization.

A main difficulty that persists is to match the security scenarios and the required

infrastructure to specific knowledge areas and technical topics. In order to identify the

knowledge areas that are relevant during the exercises, it is considered important to

establish well-defined taxonomies that address the acquired knowledge and skills [9].

For example, Security Operations Center (SOC) teams are meant to offer high quality

IT-security services using tools that actively detect potential threats and attacks and

respond accordingly [10]. In such cases, not only the deployment effort is big, but for

each participant it is best to have an individual cyberspace as the environment that

includes the deployed systems and services. Therefore, scalability issues derive from

the fact that it is required to replicate each cyberspace for each participant. Usually, the

tools required for conducting such tasks are complex and their deployment is time-

consuming [11]. Finally, the learning outcomes of using hands-on practices need to

follow curriculum guidelines or frameworks, which address the collaborative activities

that are required in cybersecurity within the industry, government and academic

organizations [2, 12, 13].

Modern technologies for deploying services or operating systems, include docker1

containers, Linux Containers (LXC), MicroVMs2, RancherVM3 and other options for

deploying and running Kernel-based Virtual Machine (KVM) or docker containers

inside a docker. Current operating systems and especially Linux distributions enhance

the ability for portable and flexible deployments. Therefore, the existing exercises and

tools can be easier deployed and managed accordingly.

There are specific benefits and drawbacks from using the existing technologies for

deploying systems and services. This research aspires to analyze the state-of-the-art

approaches for deploying cyber security exercises, considering the portability,

flexibility and capability of featuring easy-deployment and to reduce the total overhead

reducing the requirement in system resources. Our intention is to deploy, evaluate and

investigate the best practices for using such technologies to maintain cybersecurity

exercises and hands-on labs, while requiring less deployment effort. Therefore, the

main research questions that this work attempts to answer are reflected below:

1 https://docker.com/
2 https://github.com/firecracker-microvm/firecracker/
3 https://github.com/rancher/vm/

3

RQ1: What are the features, challenges and drawbacks that the different virtualization

or containerization technologies include for designing and deploying cybersecurity

exercises?

RQ2: Which are the best practices for deploying complex cybersecurity exercises while

maintaining the least overhead in terms of resources and having increased

compatibility?

RQ1 and RQ2 intend to evaluate the current deployment options using sandboxing

for maintaining cybersecurity exercises and to discover the current possibilities of

containerization and virtualization technologies. Towards this direction, we conducted

an in-depth analysis and a performance evaluation of the most common technologies,

while we also deployed example exercises accordingly for discovering the benefits and

drawbacks for each approach. The research paper is organized as follows: In section

the related work is provided, while in section 3 common virtualization technologies and

containerization approaches are analyzed, presenting the capability for using a sandbox

as the main learning environment. In section 4 the potential a solution of using a

sandbox for maintaining complex Cyber Ranges is discussed, concluding with section

5 by discussing future action points.

2 Related Work

The idea of using LXC or docker containers instead of virtual machines has been under

research during the last years [14, 15]. For example, Irvine et al introduced a framework

for parameterizing cybersecurity labs using containers [2]. The key benefits from using

containers instead of virtual machines include the higher performance that containers

score, which allows to deploy a high number of systems and services more easily,

requiring less resources. For example, AlSalamah et al. [13], analyze how

containerization techniques could open new possibilities, highlighting the difference

between virtual machines and containers. They assess the benefits that containers

provide regarding configuration, networking and performance, as well as their

flexibility for deploying large number of services. Likewise, research has been

conducted in terms of the design of architectures and toolsets for providing learning

cyberspaces related to network security and for creating hands-on lab exercises [16]. In

their research the significant benefits of using dockers instead of virtualization

technologies are also highlighted.

Significant work has been done in the past in providing security education hands-on

labs including practical cybersecurity exercises. For example, SEED labs4 provided

pre-built virtual machine images including about 30 exercises and featuring a wide

range of cybersecurity topics [17]. Similarly, the ENISA’s Computer Security and

Incident Response Team (CSIRT)5, since 2008, released and introduced training

material that is constantly updated by new exercise scenarios containing toolsets and

virtual images to support hands-on training sessions.

4 https://seedsecuritylabs.org/
5 https://enisa.europa.eu/topics/trainings-for-cybersecurity-specialists/online-training-mate-

rial/

4

Other similar approaches include reinforced learning approaches that include

simulation and emulation processes derived from complex deployments. Such

approaches include important elements that enterprise networks have such as

workstations, firewalls and servers, among others for creating a high-fidelity training

environment [18, 19, 20]. Instead, deployment options that include more complex

infrastructures and network topologies are not very frequently found in CtF (Capture

the Flag) exercises and are usually related to cyber ranges, where more complex

topologies are presented [21, 22]. As a result, the deployment options for cybersecurity

exercises are currently revised for using containerization technologies along with

virtualization technologies to extend and provide more interactive cybersecurity

learning environments.

3 Virtualization Technologies and Sandboxing

Virtualization technologies are frequently used for creating and deploying vulnerable

virtual systems for testing purposes. Popular approaches include HackTheBox6,

TryHackMe7 and the vulnerable images published on VulnHub8, an open repository

providing hands-on lab cybersecurity exercises.

Fig. 1. Dockerization of existing services and vulnerable systems

Similarly, SEED labs and ENISA CSIRT introduced training material containing

cybersecurity exercise scenarios in the form of Virtual Images to support hands-on

training sessions. The benefits of using virtualization techniques are many, however,

the total performance and size overhead could be difficult to manage. Therefore,

specific cybersecurity scenarios can be revised to reduce the total overhead accordingly.

For example, existing services are possible to be revised and deployed as docker

6 https://hackthebox.eu/
7 https://tryhackme.com/
8 https://vulnhub.com/

5

containers (Fig. 1). Even services provided from Linux distributions such as Kali

Linux9 are possible to be deployed in a docker container for the participants to use

instead of a virtual machine. Towards this direction, some of the existing cybersecurity

exercises that include DVWA10 or Webgoat11 have been released as docker containers.

The main idea of our approach is that docker containers can be used for deploying

multiple service instances for the participants to have their own cyberspace

environment to practice with.

Fig. 2. Webgoat instances running as different docker containers

Despite their benefits, containers include a few security issues, mainly deriving from

the fact that they share access to a single host, meaning that any potential malicious

code could get full access and take over the host system. Such incidents of escalating

the privileges from a docker container are not addressed in the content of this research

paper.

Fig. 3. Dockers and Ignite Firecracker

On the other hand, containers are easier to manage than virtual machines making it

possible to create a network topology that includes more software components to

properly initiate the exercises, requiring less deployment and integration effort. Despite

9 https://kali.org/
10 https://hub.docker.com/r/vulnerables/web-dvwa/
11 https://hub.docker.com/r/webgoat/webgoat-8.0/

6

the security concerns, new containerization solutions are on the process of mitigating

such threats. For example, Firecracker and more particularly Ignite Firecracker12, is an

existing solution providing kernel isolation running Kernel-based Virtual Machine

(KVM), while including less overhead.

As shown in Fig. 3, docker containers are possible to be deployed as nested

containers using a specific flag for running the docker image (--privileged). Another

option we investigate is the case where dockers inside a docker are deployed using the

same or different docker daemon when required. Such options come with the risk of

triggering inconsistencies on the processed data or creating unstable environments.

Therefore, the solution of using Firecracker is more applicable providing strong

isolation. Taking the above into consideration, it is important to conduct a performance

evaluation and deploy test cases to understand and discover any potential security or

performance issues. Using either the Dockers inside a Docker or MicroVMs with

Firecracker, it is possible to deploy multiple instances for the participants to exercise,

giving them the opportunity to interact with their own isolated cyberspace. The

isolation capabilities along with the performance evaluation, benefits and drawbacks of

each approach are presented in detail in the next section.

3.1 Evaluation of Popular Virtualization and Containerization Techniques

The purpose of this evaluation was to discover the performance capabilities and

measure the total overhead of each of the existing techniques and to deploy various

approaches for analyzing the benefits and drawbacks. In Table 1 the compatibility

capabilities and the option to deploy a system or service inside a service are presented.

Table 1. Capabilities for executing containerization and virtualization techniques

 KVM Docker Docker Compose Firecracker W7-10

KVM ✔ ✔ ✔ ✔ ✔

DinD ✔ ✔ ✔

Docker ✔

Firecracker ✔ ✔ ✔

RancherVM ✔ ✔ ✔ ✔(W7)

For example, it is possible to execute a KVM inside a KVM, a docker inside a KVM,

the ability to run multi-container Docker applications (docker compose) inside a KVM,

running Firecracker inside a KVM and finally to test deployment options for Windows

services. The above cases investigate the current deployment possibilities in response

to RQ1 mentioned in Section 1 and the benefits as well as the challenges and drawbacks

are described further below (Table 1, Table 2). In our tests, we discovered quite a few

compatibility issues regarding Windows hosts, and we also included RancherVM in

our tests as another solution for creating virtual images with less overhead and

12 https://github.com/weaveworks/ignite/

7

successfully run Windows 7 machines using KVM. Our efforts for creating a Windows

10 machine for using in RancherVM was not successful and might require more effort

to proceed with this approach. The approach of using RancherVM is included in Table

2, however we excluded the results from the evaluation considering the deployment

issues we had for executing properly the evaluation tests for RancherVM (we could not

deploy Windows10 hosts). An approximately summary of the performed tests is

presented in terms of the total overhead, compatibility, performance, isolation

capabilities and scalability per approach (Table 2) derived from the extracted metrics

described below. The main benefits are in terms of scalability from using docker

containers or firecracker and the color highlights and describes the benefits and

drawbacks for each of the selected approaches. For conducting the evaluation tests, a

native Linux system was used (Fedora Workstation 32) and a computer system that

contained an i7-9750H CPU with 24GB DDR4 RAM memory and 1TB NVME-SSD

hard disk.

Table 2. Summary matrix for benefits and drawbacks for each of the approaches

Benefits KVM Docker Firecracker Rancer.VM Indices

Less Overhead 0-20% ▄

Compatibility 20-40% ▄

Performance 40-60% ▄

Isolation 60-80% ▄

Scalability 80-100% ▄

In all our tests we ensured that all the other applications were closed, and no additional

overhead was added except for the main system services. For the evaluation tests of the

Linux hosts/services we used Sysbench13 for the memory tests and Stress-ng14 for

testing the Control Process Unit (CPU) and collecting disk cache input/output (I/O)

benchmarks. For the Windows system hosts we used Novabench15. The details of the

system tests are presented in Fig. 4 considering the following benchmarks:

1. CPU: CPU performance tests using the Stress-ng for each different

technology. Rating is considered as the number of iterations of the CPU

stressor during the run for 20seconds.

2. I/O – Hard disk: Performance test using Stress-ng related to the disk’s cache

measuring the input/output operations per second. Rating is considered as the

number of iterations of the disk cache stressor during the run for 20seconds.

3. RAM memory: Effective RAM performance by calculating the writing speed

(Mega Bytes per second – MB/s).

13 https://github.com/akopytov/sysbench/
14 https://wiki.ubuntu.com/Kernel/Reference/stress-ng/
15 https://novabench.com/

8

The evaluation metrics of course depend on the main system resources and our purpose

was to compare the difference between the used technologies. The results from the

performance evaluation and benchmarks are presented in Fig. 4. Taken the above into

consideration the results from the performance evaluation present that docker

containers maintain low overhead, mainly in terms of I/O – disk cache writing and

reading speeds (Fig. 4) in response to RQ2 (Section 1). Furthermore, we have also

investigated the total overhead in terms of both the used hard disk space and memory

size for deploying the vulnerable systems or services.

Fig. 4. Performance evaluation for the selected approaches

Results from the performance evaluation for WebGoat (a popular vulnerable web

application for using in cybersecurity exercises), running in a Docker container instead

of a KVM, are presented in Fig. 5. It is important to mention that the I/O hard disk

latency can significantly affect the total performance.

Fig. 5. Performance evaluation for WebGoat

After deploying 10 different docker containers of WebGoat, it was concluded that only

931MB of the system’s memory was used (398MB for deploying all the containers)

instead of 12GB system memory that WebGoat required running as a virtual machine.

Fig. 6. Performance evaluation of Windows Hosts

4
8 1

6
7

2
54

2 6
5

2
04

7 1
0

6

2
14

8 1
3

7

2
54

7 8
9

2
14

2 9
1

2
13

9 5
2

2
0

6

2
1

2
04

1

3
7

2
14

0 7
7

2
3

C P U (R a t i n g) I / O (R a t i n g) R A M (T h o u s a n d s M B / s)
Native KVM Docker Firecracker
DiND Docker in Firecracker Docker in KVM Firecracker in KVM
DiND in KVM VMWare

42
65

20
41

91

13.8

43 101

13.7

CPU (Rating) I/O (Rating) Memory (Thousands MB/s)

KVM

WebGoat in

Docker

WebGoat in

DiND

1
2

9
0

2
3

.7

9
5

5

9
5

5

1
6

7
2

1
1

8
8

1
8

.2 1
0

5 5
3

0

7
5

2

9
9

9

1
6

.5 9
4 4

5
3

6
5

3

C P U (R a t i n g) R A M

(T h o u d s a n d s

M B / s)

I / O (R a t i n g) I / O W r i t i n g

(M B / s)

I / O R e a d

(M B / s)

Native

KVM

KVM in

Docker

9

The total disk space that WebGoat required was 1.2GB, while the disk space required

for deploying it as a docker was 533MB for the docker image and 398MB for each

container. The deployed containers required no additional disk space after deploying

the first container unless further changes to the container files are applied. Therefore,

the total disk space required for deploying the services is significantly reduced.

Furthermore, every docker container has a separate IP and therefore each participant is

able to conduct an isolated and independent assessment to the potential vulnerable

service or system. In Fig. 6 the results from the results from the performance evaluation

for Windows hosts are presented, using KVM and also the deployment of a windows

hosts running on KVM in a docker container.

Fig. 7. KVM running in two different docker containers

As presented in Fig. 7 each one of the deployed containers are managing KVM and

include 3 already deployed virtual machines. The drawbacks from the deployments

using containerization include various security risks that could allow the participants to

take over the host Windows hosts currently cannot be deployed using containers, but

only using KVM or similar virtualization technologies. Therefore, the total overhead in

terms of disk space, RAM and CPU is difficult to be reduced when it is required to

deploy a large number of windows hosts.

Fig. 8. The running docker container that include KVM and docker in a docker capabilities

The overhead for the docker container that runs the KVM service is affordable in

comparison with the direct KVM deployment. A solution for the compatibility issues

10

of Windows hosts is to use Image2Docker16 to containerize some of the workloads

migrating Windows apps out of virtual machines. However, such approaches are not

considered in this research paper. In summary and responding to RQ1, RQ2 it seems

that both virtualization technologies and containerization technologies hold both

benefits and drawback as presented in this section. However, scalability capabilities

which docker containers have makes the choice for our deployment more appropriate.

However, the usage of KVM is not excluded but we decided to include KVM inside a

docker container for creating unique cyberspaces which are running on different

containers that include KVM mostly for running Windows hosts.

3.2 Sandboxing for Monitoring the Participants’ Actions

A sandbox, in general terms, is a testing environment which allows the validation of

code, services, or software components before migrating to the production

environment. In malware analysis it is important to dynamically execute auditing and

monitoring processes in the virtual system Sandboxing is frequently used in

cybersecurity to perform deep analysis of evasive and unknown threats. The hidden

behavior of the potential malware is revealed using automated dynamic analysis or by

testing the code manually. Fig. 9 represents the process of the existing security

solutions for conducting dynamic malware analysis. Malware could be difficult to

detect using signature-based security solutions. Therefore, for conducting dynamic

malware analysis, approaches such as Cuckoo sandbox and virtualization techniques

such as KVM, VMWare17 or Virtualbox18 are used [21, 22].

Fig. 9. Existing sandbox approaches

The process includes files that are sent for malware analysis to a sandbox which initiates

a virtual machine for executing the file. After the execution of the file from the sandbox,

16 https://github.com/docker-archive/communitytools-image2docker-win
17 https://vmware.com/
18 https://virtualbox.org/

11

screenshots are generated accordingly, and the system shuts down in case of malware

infection. While the procedure is dynamic, the results and reports are static, solely

focusing on the potential infected file. Therefore, such approaches do not include

vulnerability assessments in cases where a vulnerable service is deployed that might

not be malicious, however the deployed service could intentionally open specific

vulnerabilities in the system (e.g. deploying an outdated apache server).

Fig. 10. Dynamic and continuous system auditing using sandboxing

Fig. 10 presents the possibility of conducting security auditing in systems not only for

malware analysis but for overall monitoring the behavior of sandboxed systems. In our

case we used Wazuh19, a host-based intrusion detection system (HIDS) for combining

anomaly and signature-based technologies to detect intrusions, potential threats and

behavioral anomalies triggered by the security events generated from the participants

of the cybersecurity exercise. Our intention was to further extend the potential of

dynamic analysis, using sandboxing to conduct security and auditing tests including

procedures such as file integrity monitoring, vulnerability detection, regulatory

compliance, among others.

4 Towards a new model for Cyber Range deployment

Containers, as discussed above, present a lot of benefits and new technologies such as

Firecracker extend the possibilities for deploying systems or services requiring less

effort and inducing less overhead. The performance evaluation presented in this paper

supports this fact; however, the tests were not conducted in a stressful or overloaded

network environment to provide more accurate metrics regarding the system responses.

Security aspects and isolation capabilities should be tested as well to better define the

security posture of the proposed deployments. RancherVM was not completely tested

since some deployment issues were present which would result in having additional

overhead and thus it was excluded from the evaluation metrics. However, admittedly,

the existing approaches could be revised to include more options and capabilities during

hands-on practices. Not only the performance issues and deployment options are mature

enough, but the cybersecurity exercises could extend further to more reactive security

19 https://wazuh.com/

12

scenarios that include incident response and blue teaming. Furthermore, it is easier to

deploy existing infrastructures and network topologies using both virtualization and

containerization.

Fig. 11. A Cyber Range deployment for educational purposes

The benefits and drawbacks for each approach were presented in Section 3 and

educators could use the options that fit better to their preferences. For example, the

option to use Dockers inside a Docker could be easy deployed requiring less effort as

it requires no further configurations and could be easily deployed in seconds. Not only

this but the required hard disk size is reduced, and the facilitator could easier deploy

more than one services or operating systems running in a docker container. A

significant benefit from using containers instead of a virtual machine is the low

overhead induced for the RAM size since virtual machines require a different kernel

which requires a significant amount of memory (about 1GB for a modern Ubuntu

distribution). Indeed, there are solutions which might reduce the total overhead even

more, but currently the easier approach for mitigating such issues is using

containerization. An approach towards this direction is presented in Fig. 11, presenting

the possibility to replicate or sandbox entire systems deployed for educational and

learning purposes.

An important aspect of such approaches is that multiple complex systems and

services could interact. Therefore, we present the case where the systems are interacting

with each other and participants are invited to conduct security tests or red team

assessments on a cyberspace instance that includes multiple components. The network

topology is automatically deployed along with the used ports providing easier

deployment. The agents are already deployed as presented in Fig. 12, reducing the

required effort for the total deployment. Finally, as mentioned in Section 3.2 the

monitoring process is used for collecting the progress from each participant.

13

Fig. 12. Monitored Virtual Systems and Docker containers

As a result, the standard approaches for using CtF challenges as an assessment tool

could be extended since we are able to actually monitor the participants’ actions and

trigger events related to security rulesets, policies or to create custom rules that matches

to the offensive actions. Being able to monitor the deployed assets the exercises could

include more interactive elements, enabling attack and defense scenarios extending

exercises focused also on blue teaming and incident response. The monitored assets

could include docker containers, services or virtual systems (Fig. 12, Fig.

13).Therefore, the total required effort decreases providing us the opportunity to deploy

more complex security scenarios for conducting cybersecurity exercises.

Fig. 13. Capability to monitor specific docker containers

14

In this research paper we tested the capabilities to host and deploy the proposed

approach and we successfully deployed the manager for monitoring, Webgoat and

DVWA for having a hands-on lab ready for replication. The Dockerfile retrieves and

deploy all the required images for the cybersecurity exercises. The APIs for executing

the security scenarios and to enhance automation for deploying labs according to

specific learning goals is still under research.

5 Conclusions and Future Work

This paper discusses the potential benefits of using containerization instead of

virtualization technologies to deploy cyberspaces for maintaining cybersecurity

exercises. In response to our research questions mentioned in Section 1, we discovered

the various features that containerization and MicroVΜs provide, in contrary to

virtualization technologies (RQ1). More specifically, docker containers include a lot of

benefits and more specifically the reduced overhead and of the required system

resources, however specific security issues apply. In response to RQ2, we concluded

that by using containerization techniques or MicroVMs, the overall overhead is reduced

in comparison with the traditional virtualization technologies. More specifically, a

significant reduction in terms of the used memory and amount of disk was observed,

among other performance benefits. Towards this direction, we created a docker image

that contained multiple docker containers for the facilitators or educators to deploy

Cyber Ranges. The results confirm that the total overhead is decreased, and that the

total management is easier for creating and deploying cybersecurity hands-on labs.

Future work includes the creation or alignment of the rulesets that will apply for

monitoring the participants’ progress by collecting security events that triggered from

their offensive tasks. Furthermore, specific cybersecurity exercises need to be deployed

for further testing the appropriateness of our proposal. Extended research will be carried

on deploying specific Common Vulnerabilities and Exposures (CVEs) using docker

containers. Finally, the connection to the National Initiative for Cybersecurity

Education (NICE) from NIST is in scope of our future research as well as the revision

of the existing cybersecurity exercises to align with our approach. Towards this

direction we intend to further investigate the existing taxonomies that might help

identifying the learning impact during the exercises.

Acknowledgments

This work is performed as part of the SPHINX project that has received funding from

the European Union’s Horizon 2020 research and innovation program under grant

agreement No. 826183 on Digital Society, Trust & Cyber Security E-Health, Well-

being, and Ageing. The funding body have not participated in the elaboration of this

research paper.

15

References

1. Childers, N., Boe, B., Cavallaro, L., Cavedon, L., Cova, M., Egele, M., Vigna, G.:

Organizing large scale hacking competitions. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 6201

LNCS, 132–152 (2010).

2. Irvine, C.E., Michael, F., Khosalim, J.: Labtainers : A Framework for Parameterized

Cybersecurity Labs Using Containers. (2017).

3. Schreuders, Z.C., Shaw, T., Shan-A-Khuda, M., Ravichandran, G., Keighley, J., Or-dean,

M.: Security Scenario Generator (SecGen): A Framework for Generating Randomly

Vulnerable Rich-scenario VMs for Learning Computer Security and Hosting CTF Events.

Ase’17. (2017).

4. Hay, B., Dodge, R., Nance, K.: Using virtualization to create and deploy computer security

lab exercises. IFIP International Federation for Information Processing. 278, 621–635

(2008).

5. B, K.T., Abujelala, M., Rajavenkatanarayanan, A.: Interfaces for Personalized Robot-

Assisted Training. 88–98 (2018).

6. Furnell, S., Fischer, P., Finch, A.: Can’t get the staff? The growing need for cyber-security

skills. Computer Fraud and Security. 2017, 5–10 (2017).

7. Burley, D.L.: Special section: Cybersecurity education, Part 2. ACM Inroads. 6, 58–59

(2015).

8. Baldassarre, M.T., Barletta, V.S., Caivano, D., Raguseo, D., Scalera, M.: Teaching cyber

security: The hack-space integrated model. CEUR Workshop Proceedings. 2315, (2019).

9. Zimmerman, C.: Cybersecurity Operations Center. (2014).

10. Debatty, T., Mees, W.: Building a Cyber Range for training CyberDefense Situation

Awareness. 2019 International Conference on Military Communications and Information

Systems, ICMCIS 2019. 1–6 (2019).

11. Beltran, M., Calvo, M., Gonzalez, S.: Experiences using capture the flag competitions to

introduce gamification in undergraduate computer security labs. Proceedings - 2018

International Conference on Computational Science and Computational Intelligence, CSCI

2018. 574–579 (2018).

12. Thompson, M.F., Irvine, C.E.: Individualizing Cybersecurity Lab Exercises with Labtainers.

IEEE Security and Privacy. 16, 91–95 (2018).

13. AlSalamah, A.K., Cámara, J.M.S., Kelly, S.: Applying virtualization and containerization

techniques in cybersecurity education. Proceedings of the 34th Information Systems

Education Conference, ISECON 2018. 1–14 (2018).

14. Perrone, G., Romano, S.P.: The docker security playground: A hands-on approach to the

study of network security. 2017 Principles, Systems and Applications of IP Tele-

communications, IPTComm 2017. 2017-Septe, 1–8 (2017).

15. Yin, Y., Shao, Y., Wang, X., Su, Q.: A Flexible Cyber Security Experimentation Plat-form

Architecture Based on Docker. Proceedings - Companion of the 19th IEEE Inter-national

Conference on Software Quality, Reliability and Security, QRS-C 2019. 413–420 (2019).

16. Du, W.: SEED: Hands-on lab exercises for computer security education. In: IEEE Security

and Privacy. pp. 70–73 (2011).

17. Baillie, C., Standen, M., Schwartz, J., Docking, M., Bowman, D., Kim, J.: CybORG: An

Autonomous Cyber Operations Research Gym. (2020).

18. Costa, G., Russo, E., Armando, A.: Automating the Generation of Cyber Range Virtual

Scenarios with VSDL. (2020).

16

19. Chaskos, E.C.: Cyber-security training: A comparative analysis of cyber- ranges and

emerging trends. 78 (2019).

20. Vykopal, J., Vizvary, M., Oslejsek, R., Celeda, P., Tovarnak, D.: Lessons learned from

complex hands-on defence exercises in a cyber range. Proceedings - Frontiers in Education

Conference, FIE. 2017-Octob, 1–8 (2017).

21. Jamalpur, S., Navya, Y.S., Raja, P., Tagore, G., Rao, G.R.K.: Dynamic Malware Analysis

Using Cuckoo Sandbox. Proceedings of the International Conference on Inventive

Communication and Computational Technologies, ICICCT 2018. 1056–1060 (2018).

22. Keahey, K., Doering, K., Foster, I.: From sandbox to playground: Dynamic virtual

environments in the grid. Proceedings - IEEE/ACM International Workshop on Grid

Computing. 3, 34–42 (2004).

