An Asymmetric Key Establishment Protocol
for Multiphase Self-Organized Sensor Networks

Emmanouil Magkos', Panayiotis Kotzanikolaou? Dimitris D. Vergados®, Michalis Stefanidakis'

Tonian University, Department of Computer Science, Platia Tsirigoti, 49100, Corfu, Greece.
e-mail: {emagos, mistral} @ionio.gr

2University of Piraeus, Department of Informatics, Karaoli & Dimitriou, 18534, Greece.
e-mail: pkotzani@unipi.gr

3University of the Aegean, Department of Information and Communication Systems Engineering,
Karlovassi, Samos, GR-832 00, Greece.
e-mail: vergados@aegean.gr

Abstract: 'We propose an asymmetric key establish-
ment protocol for decentralized sensor networks (DSN’s).
The protocol supports multiphase deployment i.e., the sen-
sor nodes are deployed in the network in multiple groups,
known as ‘“‘generations”. After their deployment, the nodes
of the first generation are engaged in a key establishment
protocol, in order to establish secure communication chan-
nels with their neighbors. Then, each forthcoming gen-
eration initializes a new key establishment phase, which
allows the new nodes to communicate with other nodes
of their own generation as well as with the older nodes
of the network. The protocol extends the hybrid scheme
of Kotzanikolaou et al [6]. By making the scheme of [6]
fully asymmetric, the proposed protocol corrects a security
weakness found in [6] while it does not induce further com-
putation and communication costs.

1. Introduction

Recent work on key establishment for sensor networks
has shown that it is feasible to construct sensors capable
of performing (limited) public key cryptographic proto-
cols through Elliptic Curve (EC) cryptography [10] — see
for example [4, 5, 8]. Especially in [8] a practical imple-
mentation of Elliptic Curve Diffie-Hellman (ECDH) key
exchange over Fyp is presented for establishing a shared
symmetric key between two sensor nodes, using 163-bit
EC public keys in a 8-bit, 7.3828 MHz MICA2 mote
[3]. Recently, Kotzanikolaou et al. [6] proposed a key es-
tablishment protocol for uniform self-organizing sensor
networks, where sensor nodes establish pairwise keys,
by employing limited public key cryptography. The pro-
tocol of [6] is a hybrid protocol which combines stan-
dard ECDH key agreement with symmetric techniques.
In this way, key establishment maintains many of the ad-
vantages of public key cryptography, while the compu-
tation, communication and storage costs are realistic for
sensor nodes.

Our contribution. In this paper, we propose a fully
asymmetric key establishment protocol for sensor nodes,
which corrects a security weakness in the Kotzanikolaou
et al. [6] protocol. While in [6] an attacker who compro-
mises a node and gets all its keying material is able to get
access to the victim’s past communication, the proposed
protocol provides forward secrecy to the attacked node.
The protocol has the same computation and communica-
tion costs with the hybrid protocol of [6], while the extra

protection comes at the cost of increasing the storage re-
quirements for each sensor node in the network.

2. Related Work

The hybrid key establishment protocol proposed in
Kotzanikolaou et al [6] is comprised of two parts. The
“asymmetric” part of the protocol is based on:

e Elliptic Curve Diffie-Hellmann (ECDH) [10] for
key agreement between sensor nodes. Each sen-
sor is pre-deployed with a static key pair which the
sensor will use, throughout its life, during the boot-
strapping phases with its neighbors.

e Implicit certificates [12] for entity authentication.
In order to reduce the communication and compu-
tation overhead induced by standard certificates, an
efficient construction for implicit certificates, based
on EC-schnorr signatures, is used in [6]. Such cer-
tificates are issued by an off-line authority.

To mitigate the effect of known-key attacks, and in an
effort to reduce the scalar multiplications required by
protocols such as MQV / MTI [7], the nodes in [6] use
symmetric techniques to securely exchange random
nonces; These are then used in the key derivation
process for key freshness. The “symmetric” part of
the protocol is a variation of the AKEP2 protocol
[1] for authenticated key agreement with explicit key
confirmation using initial trust between nodes. Initial
trust is comprised of generation-wide symmetric keys,
which the sensors are pre-deployed with, during an
off-line protocol with a key authority. Generation-wide
keys are only used during bootstrapping and then they
are permanently deleted.

Performance of the Kotzanikolaou et al protocol.
The protocol in [6] is scalable, with sensors being
pre-deployed with a constant number and size of keys,
independently of the size of the network. Using the
metrics of [5] regarding the costs of each cryptographic
action', the protocol of Kotzanikolaou et al [6] has a to-
tal computation cost of about 645ms per node, 186 bytes

I Their computations were performed on Mitsubishi’s 16-bit single-
chip microprocessors M16C with 10MHz clock.

of communicated messages and 193 bytes of key stor-
age requirements, for a network of five node generations.

A security weakness in the Kotzanikolaou et al [6]
protocol. We assume an attacker who eavesdrops all
communication lines. We also assume that the attacker
learns all generation-wide keys, e.g. by compromising
at least one newly arriving node in each bootstrapping
phase. Then, for any node which is compromised, dur-
ing the life of the network, the attacker will be able to
learn all node’s past and future communications with any
other node of the network.

Our protocol corrects the above issue and pertains for-
ward secrecy for any node whose keying material has
been compromised. This is achieved by requiring that
each node possesses multiple independent EC public key
pairs, one for each generation of nodes. These keys are
used in the traditional Diffie-Hellmann model [10] to es-
tablish session keys and they are always deleted at the
end of each bootstrapping period. Obviously the storage
cost for each node is increased in comparison with the
Kotzanikolaou et al protocol [6] (a performance analysis
will be given in Section 5).

3. An Asymmetric Key Establishment Pro-
tocol for Self-Organized DSNs

We propose a key establishment protocol that can be
applied to uniform and self-organized sensor networks,
i.e. we assume that all the nodes are Restricted Func-
tional Devices [5] with limited communication, compu-
tation and storage capabilities, while the communication
between sensor nodes is not supported by any static in-
frastructure.

The proposed protocol is fully asymmetric: the nodes
are not pre-deployed with any shared secret information.
However, before initialization of the network a trusted
authority C'A pre-deploys each sensor with the appro-
priate asymmetric keying information to support authen-
ticated key exchange between any two nodes of the net-
work.

After their deployment all nodes participate in a boot-
strapping phase in order to exchange keys with their
“neighboring” nodes i.e., other nodes that lie within
range. We assume that the nodes are randomly deployed
(e.g., via aerial scattering) and that are not aware of their
neighbors until their deployment. In multiphase deploy-
ment it is also possible for sensor nodes to join the net-
work in future time periods, and establish secure chan-
nels with nodes of the same and/or of a past generation.

3.1. Notation

Let g denote the order of the underlying finite field
F, and let F be a suitably chosen elliptic curve defined
over Fy,. Let P denote a base point in I, the generator
point, and n be the order of P, where n is prime. Thus
nP = O and P # O where O is the point at infinity.
Let gca € [2,n — 2] be a random integer selected by
the Certification Authority CA and Qca = qoa X P.
The pair of the static secret/public key pair of the C'A is
qca,Qca.

We assume that the network will be eventually con-

structed from a total of m generations. Let X (%) denote
a node X that belongs to the i;, node generation and
let I Dx denote the identifier of that node. For simplic-
ity and when no further clarification is required, we will
denote the node X () as X.
3.2. The key pre-deployment phase

During the key pre-deployment phase, the C'A pre-
deploys each node X () with (m — i + 1) asymmetric
key pairs and the corresponding certificates, one for
each node generation 7,7 + 1,7 + 2,...m, in order to
enable X() to perform bootstrapping with any node
Y () where k > i.

— Static public key pair: g¢s» Ocy =qcs X P
— Initial network authentication key: K

For each node X

1. Select:
ID, , i, where 1<i<m

2. For each period j, with i < j >m compute:
gy €R, G, =g, xP

M =(i,ID . 1,)
ICy =(Gy . M)
h(IC,) > ey,

9y, = 8x, tex, "qeu

3. Predeploy each node X‘* of generation i with:

Ocis P K, (‘Jx, 7]CX,)7(%{,H :ICXH)am:(‘b{m rIme)

(Secure channel)

Figure 1: The key pre-deployment phase

For each node generation j, where j = 4,2+ 1,...,m,
the C'A selects a random number gx, € [2,n — 2] and
computes Gx; = gx,; X P (see Figure 1). For each ran-
dom number g X the C A also generates an Implicit Cer-
tificate ICx;, = (Gx,,Mx, = {i,I/Dx,tx,}). Here
M x, includes a fixed generation identifier ¢ of the node,
a unique identifier /D x for the node X and the expi-
ration time ¢, of each Implicit Certificate [CX].. For
each Identity Certificate ICx;, the C'A applies a cryp-
tographic hash function and from each octet h(ICY;),
it obtains an integer ex,, by using the conversion rou-
tine? described in [10]. Then, the C'A computes the
static generation-wide secret keys of the node X as
qx; = gx,; tex; -qca,j = 4,1+ 1,...,m. The values
gx, are not given to the node X and are deleted immedi-
ately after the key generation process; Otherwise, a com-
promised node would be able to extract the static secret
key qca of the C'A from any couple of the values gx;
and gx;, for any j = 4,7 + 1,...,m. Observe that each
pair (ex;, qx;) is an EC-Schnorr signature [9], created
by the C'A, over the message M of each Implicit Cer-
tificate /Cx . The corresponding public keys Q) x;’s are

2Informally, the idea is simply to view the octet string as the base
256 representation of the integer (Section 2.3.8 of [10]).

not stored at node X’s memory. Any other node, will
be able to recover the appropriate generation-wide pub-
lic key Qx, of the node X from the Implicit Certificate
ICx; and the public key Qc 4 of the C'A (see Step 5 in
Section 3.3).

Finally, the C'A pre-deploys the node X () with the
necessary network-specific material, such as the C'A’s
public key Q¢ 4, the point P, and an initial symmetric
authentication key K (see Figure 1). This 64-bit key K
will be used by all nodes as an initial authenticator, in
order to avoid processing of fake “hello” messages and
prevent trivial DoS attacks. After the initialization of the
network the C'A will have a passive role, and will not
further participate in key establishment. The C'A will
only be allowed to generate and pre-deploy the keys for
the nodes of forthcoming generations.

3.3. The key bootstrapping phase

In this phase, any pair of sensor nodes lying in each
other’s range, will use their pre-deployed keys in order
to perform an authenticated pairwise key establishment.
Let AW, B() be two nodes belonging to generations
7, @ respectively, such that 1 < 5 < ¢ < m. Thus,
the nodes may belong to the same (j =) or different
(j < 1) generation. We describe the bootstrapping phase
for the 4, period.

B
q98;-1Cp;» Oca- P: K,
(48;,,-1CBjs1)(aB,,-ICB),)

q4;-1C4;5 Qcas P K,

(@475 1C A 4150 4, 1C)

Np.ICg,,

MAC g [Np,ICp]
2. Verify MAC +«———————————— 1.Choose: Nz eR

3. Choose Ny eR
Ny, N, ICy,

MACK[N 4,Np,1C4;]

.

] 4. Verify MAC
5. fiompu;l&l C 5. Compute:
ep, < h(ICpg;) ey, < h(IC 4;)

.=Gp +ep x0c,
Qp; =Gp, +ep x0cu 04; =Gy +eq;, x0cu

ACK 4,Np
_— s
ZMACKAB,» [ACK 4,Ng] 7. Verify MAC

8. Delete N4, Np 8. Delete N 4, Np

(at the end of the i-th bootstrapping)
Delete qp; ICB[,

(at the end of the i-th bootstrapping)
Delete a4 [CAi

OQup, =q.4; % OB, Oup, =48, * 0y
Kap; =44 Qug;»Na-N) K 4, =hdf Qg N 4N)
ACK g, N 4
MACK , TACK 5. N 4]
6. Verify MAC

Figure 2: The key bootstrapping phase

If j = ¢ then both nodes will possess, among other
things, their iy, EC key and the corresponding Implicit
Certificate, (q4,,ICx,), and (¢p,, ICp,) respectively,
generated during key pre-deployment.

Step 1. The node B(*) initiates the key establishment,
by choosing a nonce Np and broadcasting it along
with its Implicit Certificate /C'p, for the ;;, generation.
The node B also broadcasts a Message Authentication
Code (MAC) of the above values, generated with the

network-wide key K.

Step 2-3. The neighboring node A verifies the received
MAC and retrieves B’s generation identifier ¢ from
ICp,. Then, the node A chooses from its storage the
corresponding certificate /C'4, and completes the initial
handshaking, by choosing a nonce N4 and sending it to
B along with the suitable Implicit Certificate /C 4, and
aMACon (IC4,, Na, Np) generated with K.

Step 4-5. On receiving this message, the node B checks
the received MAC and if it verifies correctly, the node
B uses the received Implicit Certificate 1C 4, and the
public key Qca of the CA, in order to compute the
public key of node A for the i, generation as Q4, =
Ga, +ea, X Qca. Observe that at this point B cannot
yet verify the authenticity of the key @ 4,: as soon as A
proves knowledge of g4,, the node B will have implicit
[12] assurance that it is talking to A and that all informa-
tion included in the certificate is genuine (i.e. signed by

the C'A).
The node B computes the static pair key
®QaB;, = qB, X Qa,. The final pairwise key Kap

is computed by applying a key derivation function
kdf over Qap, and N4, Ng [10]. The function kdf
is implemented through an one-way -cryptographic
hash function, such as SHA-1 [11]. Then, the node B
chooses a random acknowledgement (AC K g) number,
computes a MAC on (ACKp, N4) with the pairwise
key Kap, and sends M ACk,, [ACKp,Na] to the
node A. The MAC will provide key confirmation to
node A, since it will prove that the corresponding secret
key gp, was used.

Step 5-6. At parallel, the node A will use the
Implicit Certificate [Cp, and the public key
Qca, in order to compute the public key of
node B as @p, Gp, + eB, X Qca. The
node A similarly computes the static pair key
QaB, = qa, X Qp,. The pairwise key is again
computed as Kap, = kdf(Qap,, Na, Np). At this
time node A will verify the MAC it had previously
received by B, in order to confirm that the appropriate
secret key of node B was used in the computation of
Kap,.

Step 7-8. In order to provide key confirmation regarding
its own secret key q4,, the node A will similarly com-
pute a MAC with the key K 4p, on a random acknowl-
edgement number (ACK 4) and send it to the node B.
After this verification, both nodes will delete the random
values N4, Np. Note that from the key K 4p, the two
nodes can derive two different keys, one for encryption
and one for authentication [10].

At the end of the 7, bootstrapping phase and after the
nodes have performed a key establishment with each of
their neighbors, the nodes A and B will delete their iy,
EC keys and certificates (q4,, [Cx;), and (¢p,, [Cp,)
respectively. For key freshness in subsequent periods,
the nodes may periodically update the pairwise key
Kap, using an one-way hash function. The time

interval between subsequent renewals may depend on
the data traffic volume, as well as on the strength of the
underlying cryptographic primitives.

Remark. Consider two nodes which are not able to com-
municate during the ¢’th bootstrapping phase (e.g. due
to a weak signal, or a node being busy). In the proposed
protocol they will be able to establish session keys in a
future bootstrapping phase by using the corresponding
public key pair. This was not possible in [6] where all
nodes deleted their generation-wide keys at the end of
each bootstrapping phase.

4. Security Considerations

Our threat model includes both passive and active at-
tacks. The proposed protocol extends the Kotzaniko-
laou et al [6] protocol by combining standard ECDH
key agreement [10] and implicit certificates [12] for
mutual authentication without any prior secret informa-
tion being shared between nodes. The protocol is a
four-pass challenge-response protocol for authenticated
ECDH key agreement with explicit key confirmation.
We make use of random nonces for message and key
freshness, and MACs for data integrity. We assume that
the underlying primitives are secure.

4.1. Secure key generation

By using a private offline interface between each sen-
sor node and the C'A, during pre-deployment phase, both
active and passive attacks against the key generation pro-
cess (such as unknown key share attacks and small sub-
group attacks [7]) are thwarted, provided that the C A
is honest and takes all reasonable measures in the key
generation process.

4.2. Known-key security

Clearly, if a node’s keying material is revealed at
any time, all its present and future communication is
revealed, given that the attacker is also an eavesdropper.
In the following we will examine whether the forward
secrecy property is maintained throughout the execution
of the protocol.

Forward secrecy The derivation of a session key K 4,
is based on the static EC keys g4, and ¢p,, and the ran-
dom values N4, Np. Since N4, Np are transported in
the clear, they do not add security to the scheme. How-
ever, the nodes A, B delete their EC keys qa4,, gp, re-
spectively, at the end of the ¢’th bootstrapping phase and
after they have performed a key establishment with each
of their neighbors. Recall that in subsequent periods,
the nodes will update the pairwise key K 4p, using an
one-way hash function. Thus, compromising a node at
a given time does not reveal past communications of the
attacked node. This would require knowledge of the par-
ticular EC keys used for any past session key.
4.3. Node authentication

The proposed protocol uses implicit certificates [12]
to support mutual entity authentication. Our specific
construction is based on EC-Schnorr [9] signatures,
which are provably secure under the random oracle
model given that the discrete logarithm problem over a

subgroup < G > is untractable [2].

Security against impersonation attacks. During the
bootstrapping phase, the node A uses the implicit cer-
tificate of B and the public key of the C'A to reconstruct
the public key @) p of node B. In step 5, the node B uses
its private key ¢p for the construction of the ECDH key
K 4 p and returns a MAC created with K 4 5, the node A
will have implicit assurance that it is talking to B and
that all information included in the certificate is genuine
(i.e. signed by the C A).

Security against fake generation attacks. Similarly to
[6], fake generation attacks are precluded: the generation
number of the node is included in its implicit certificate.
A compromised node cannot present itself as a node of
an earlier or future generation, or else the verification of
the certificate will fail.

5. Performance Evaluation

Computational complexity. In order to produce
comparable results with related work, we use the metrics
of [5] regarding the costs of each cryptographic action.
Their computations were performed on Mitsubishi’s
16-bit single-chip microprocessors M16C with 10MHz
clock. The same metrics were used in the hybrid
protocol of [6]. The costs per action are shown in
Figure 3. The cost of fixed-point scalar multiplication is
reduced, by having a pre-computed look-up table stored
in the ROM area of each sensor. A block cipher, such as
AES is assumed for the construction of the keyed-hash
function. The keyed-hash function is used for the com-
putation/verification of MACs. The SHA-1 algorithm
is used for the evaluation of hash values, for random
number generation and as the key derivation function
kdf. The computation evaluation of our protocol shows
a total cost per node of about 633 msec. This cost is
about 20% lower than the cost of the hybrid protocol of
[5]1 (760 msec) and slightly better than the protocol of
[6] (645 msec), computed with the same metrics.

Cryptographic Action | Cost/action | Number of actions per node
(msec) Node A Node B

Scalar mu1t1p]|catlon 480 1 |
(random point)
Scalar multiplication
(fixed point) 130 1 1
EC addition 3 1 1
Keyed Hash Function 3 4 4
evaluation
Hash anctlon 5 5 5
evaluation
Random number 5 2 5
generation
Total Computation 633 633

| Cost per node

Figure 3: Computational costs per node

Communication complexity. The proposed protocol
requires a total of 4 message exchanges for key estab-
lishment, including the protocol initiation, exchange of
MAGC:s and key confirmation. Assuming a node ID is 64
bits, a generation ID and the expiration time are 8 bits,

the Elliptic Curve modulus is 160 bits, the cipher-blocks
and MACs are 128 bits, and the random nonces are 64
bits, then the communication cost of the protocol is 1440
bits or 180 bytes, equivalent to the 180 bytes required in
[5] and slightly better than the 186 bytes required in [6].

Key storage requirements. Assuming that the nodes
are pre-deployed with keys that allow communication
with nodes of k generations (including their own gen-
eration), the total storage requirements during key pre-
deployment are 384 4+ k x 400 bits. We compare the
storage costs with the costs of [6].

Key pre-deployment storage costs per node
for k node generations (bits)
Compared protocols k=1 k=2 k=3 k=4 k=5 k=10
Kotzanikolaou et al [7]
1032 + (k x 128)
The proposed protocol
384 + (k x 400) bits

1160 1288 1416 | 1544 1672 | 2312

784 1184 1584 1984 2384 4384

Figure 4: Storage per node for k generations

The key pre-deployment storage costs of the protocol
allow for a reasonable number k£ of node generations.
For k < 2 the protocol has lower or almost equal costs
with the protocol of [6], while for k& > 2 the protocol
of [6] is lighter in storage costs. For £ = 10 node gen-
erations, the proposed protocol has almost double key
pre-deployment storage costs than the protocol of [6].
However, the storage requirements of our protocol are
tolerable for applications requiring a limited number of
node generations. For example, for ¥ = 5 node genera-
tions, the key storage costs are 2384 bits or 298 bytes.

This cost includes,the private EC keys of the sensor,
the public key of the C'A, the base point P and the
network-wide initial key K. Note that after each key
establishment phase, the sensor node will delete the EC
keying material used in this phase. This helps in main-
taining an almost constant key space regardless of the
generation of pairwise keys. Our protocol is scalable:
for a fixed number of generations, the per-node storage
and energy resources do not limit the size of the network.

6. Concluding Remarks

In this paper we show that it is feasible to construct au-
thenticated key agreement protocols for uniform DSN’s,
based on asymmetric (EC) cryptography only, with the
same computation and communication cost as in hybrid
protocols, such as the Kotzanikolaou et al scheme [6].
The proposed asymmetric scheme improves the security
of [6]. More specifically it establishes forward secrecy
for past communications in case a node is compromised
by an active attacker who is also an eavesdropper. The
additional cost of the proposed protocol is the additional
storage requirements for each node of the network.

Our protocol supports multiphase node deployment,
where nodes may join the network in several time peri-
ods and it is scalable, since the number of pre-deployed
keys is fixed for a given number of generations and does
not depend on the size of the network.

Future work on the specific research area should be
focused on more energy-efficient protocols for secure

key establishment between sensor nodes in unattended
environments. Our findings show that it is feasible to
use Elliptic Curve Cryptography as a supplementary
security primitive, for special uses of low-energy com-
puting devices. In a future work we will present more
specific implementation results.

ACKNOWLEDGEMENT

This Research work is funded by the Ministry of
Education and Religious Affairs and co-funded by E.U.
(75%) and National Resources (25%) under the Grant
”Pythagoras - Research Group Support of the University
of the Aegean”.

REFERENCES

[1] M. Bellare and P. Rogaway. Entity authentication
and key distribution. In Proceedings of the Ad-
vances in Cryptology — Crypto "92.

[2] D. Brown, R. Gallant, and S. Vanstone. Provably
secure implicit certificate protocols. In Proceed-
ings of the 5th International Conference on Finan-
cial Cryptography, volume 2339 of LNCS, pages
156-165. Springer-Verlag, 2002.

[3] Crossbow. Mica2 wireless measure-
ment system datasheet. Available at:
http://www.xbow.com/Products/Product_pdf files
/Wireless_pdf/MICA?2 _Datasheet.pdf, 2005.

[4] G. Gaubatz, J. P. Kaps, and B. Sunar. Public key
cryptography in sensor networks -revisited. In Pro-
ceedings of the 1st European Workshop on Security
in Ad-Hoc and Sensor Networks (ESAS "04), 2004.

[5] Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and
J. Zhang. Fast authenticated key establishment
protocols for self-organizing sensor networks. In
Proceedings of the 2nd ACM International Con-
ference on Wireless Sensor Networks and Applica-
tions, pages 141-150. ACM Press, 2003.

[6] P. Kotzanikolaou, E. Magkos, C. Douligeris, and
V. Chrissikopoulos. Hybrid key establishment for
multiphase self-organized sensor networks. In Pro-
ceedings of the IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Net-
works WoWMoM 05, pages 581-587. IEEE Press,
2005.

[7] L.Law, A. Menezes, M. Qu, J. Solinas, and S. Van-
stone. An efficient protocol for authenticated key
agreement. Designs, Codes and Cryptography,
28(2):119-134, 2003.

[8] D. Malan, M. Welsh, and M. Smith. A public-key
infrastructure for key distribution in TinyOS based
on elliptic curve cryptography. In Proceedings of
the Ist IEEE International Conference on Sensor
and Ad hoc Communications and Networks, Santa
Clara, California, Octomber 2004. IEEE Press.

(9]

(10]

(11]

(12]

C. Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 4:161-174, 1991.

SECG. Standards for efficient cryptography
group. SEC 1: Elliptic curve cryptography.
Available at: http://www.secg.org/download/aid-
385/secl final.pdf, 2005.

SHA. Federal Information Processing Standard
180-2: Secure Hash Standard, August 2002.

R. Struik and G. Rasor. Mandatory ECC
security algorithm suite. Available at:
http://grouper.ieee.org/groups/802/15/pub/2002/
May02/02200r1P802-15_TG3-Mandatory-ECC-
Security-Algorithm-Suite.pdf, 2002.

