Evaluating Low Interaction Honeypots and
On their Use against Advanced Persistent Threats

ABSTRACT

In this paper we evaluate several Low Interaction Honey-
pots (LIHs) according to several usability and performance
criteria. Furthermore we argue on the utilization of LIHs
that could indicate early signs of jeopardy from Advanced
Persistent Threats (APT).

Keywords

Low-interaction honeypots; Usability, Performance, APTs

1. INTRODUCTION

A big challenge for information systems is analyzing mali-
cious code behavior [10]. As the dependence of our society
on critical infrastructures in the form of Industrial Control
Systems (ICS) increases, a whole new underground economy
flourishes [25]. As a result, malicious code is becoming more
and more sophisticated. For example, Advanced Persistent
Threats (APT) such as Stuxnet, Duqu, Flame, and Gauss
are considered the cutting edge of malware [18] and, as such,
they present exceptionally high complexity, are extremely
targeted and have advanced stealth capabilities [27].

Honeypots are information systems, either physical machines,
virtual machines or software emulated services [5] whose
value derives from unauthorised or illicit use by adversaries
[6]. Their passive, deceptive nature’s main target is to gather
information about the attacks they receive [4]. They can be
categorized in various ways. Depending on the deployment
motive, into Research and Production Honeypots [9]; re-
garding the level of interaction provided to the attacker, into
High Interaction and Low Interaction Honeypots [11]; con-
sidering the hardware deployment type, into Physical and
Virtual Honeypots [7]; finally, regarding the role of the hon-
eypot, into Server Side and Client Side Honeypots [16].

Our Contribution. A recent evaluation, conducted by
ENISA [24], provided some insight regarding the best hon-
eypot software solution, suitable for usage by a CERT team.

In this paper we extent that study by assessing state-of-the-
art honeypot software solutions in terms of a set of usability
and performance criteria, according to the latest SSI stan-
dards [29]. In addition, we argue on the utilization of LIHs
that could indicate early signs of jeopardy from APTs.

2. LIH SOFTWARE EVALUATION
2.1 Criteria

First we will review the criteria which will be taken into
account for our evaluation [20]:

1. Usability. The main factors that are considered regard-
ing the usability of honeypots are:

e Understandability. This factor is defined by the
level of difficulty a user faces in order to: understand
the purpose of a particular honeypot, but also its basic
and advanced functions; establish its design rationale
and the availability of an architectural overview; get
an initial set of case studies.

e Documentation. The factors taken into considera-
tion for this evaluation are: Availability of documen-
tation on the project site; the quality of the available
documentation, its completeness, accuracy and clar-
ity; assumptions that are made about the background
expertise of the reader; the task-orientation of the doc-
umentation; whether it gives examples of what the user
can see at each step.

e Buildability /Installability Important factors here
are: Difficulty of meeting the prerequisites for build-
ing/installing the software on a target platform; avail-
ability of instructions at the project’s site for build-
ing/installing the software; existence of an automated
build(e.g., Make); documentation of all mandatory third-
party dependencies; use of dependency management
to automatically download dependencies; provision of
tests to verify the success of the build/installation;
availability, for all source and binary distributions, of a
README.TXT with project name, web site, how/where
to get help, version, date, licence etc; availability of an
installer and of an automatic uninstaller.

e Learnability The aspects considered are: straightfor-
wardness of achieving basic functionality; availability
of a getting-started guide; instructions supporting all
use cases; availability of API documentation for user-
developers.

2. Performance. Performance in a LIH is measured in
terms of the following factors: Number of collected mal-
ware samples in a given deployment period; the time the
system continues to function properly; number of concur-
rent sessions the honeypot can handle; quality of collected
metadata; number of available emulated services.

2.2 Dionaea

Dionaea (http://dionaea.carnivore.it) is one of the most com-
plete and highly productive honeypots used in this study,
mainly because of the advanced emulation of the vulnerable
services it mimics. Its evaluation is depicted in Fig. 1.

Dionaea Evaluation @

Excellent Fair Poor

Und dabili * *

D i *
Buildability *
Instalability * *
Learnability *

Samples Quality K * K

Samples Quantity 4 4

Uptime *x * *k

*x *x %
* *

Sessions Number

Quality
Services

Figure 1: Dionaea honeypot evaluation

Understandability (Fair). Dionaea’s functionality is well
described in the project’s site but could be more analytic
concerning its advanced functions. The design rationale is
available but case studies are not present.

Documentation (Poor). The documentation at Dionaea’s
website and blog do not seem to have been updated for long
period of time.

Buildability (Poor). Dionaea depends on numerous soft-
ware prerequisites, all of which are third party and need to
be built separately. An automated build is provided and all
dependencies were available at the time of writing.

Installability (Fair). By following the instructions on the
projects website, installation was successful with no prob-
lems. The third party dependencies were available and a
test to verify installation success was provided. An installer
is not available, neither an automatic uninstaller.

Learnability (Poor). Dionaea has no graphical interface
and long commands are required for the system to start
functioning. Configuration is available through one configu-
ration file that is not easily understood by the average user.
There are no use cases provided, nor API documentation for
developers.

Malware Samples Quality (Excellent). The quality of
samples is exceptional and are maintained in a specific folder
for further analysis named after the hash they produce, for
ease of manipulation.

Malware Samples Quantity (Ezcellent). Dionaea is able
to collect vast amounts of malware samples, mainly because
of the number of services it can emulate (see below).

Uptime (Ezcellent). The system remained functional dur-
ing the three days it was tested and no malicious communi-
cation seemed to disrupt its working state.

Concurrent Sessions (Ezcellent). Dionaea is able to listen
on numerous network interfaces and IP addresses.

Metadata Quality (Fair). All information Dionaea col-
lects are stored in a logfile and in SQlite database, allowing
easy manipulation of the data. Third party tools such as
POf can be integrated with Dionaea in order to provide ad-
ditional information about the attacks.

Emulated Services (Ezcellent). The vulnerable services
it emulates are numerous, i.e., SMB, HTTP, FTP, TFTP,
MSSQL, MySQL, SIP, and their emulation is quite realistic.

2.3 Honeyd

Honeyd [8] is a framework to instrument multiple, unallo-
cated Internet addresses on an existing network with virtual
honeypots and corresponding network services. For each 1P
address, we can tell Honeyd how we want the simulated com-
puter to behave. Honeyd is not designed to collect malware
samples but to collect statistics about malware attacks. The
project has not been updated since 2007 but still remains
functional and provides invaluable services to the research
community. Its evaluation is depicted in Fig. 2.

Honeyd Evaluation @

Excellent Fair Poor
[il * %k
D i >
ildabili * Kk %
Instalability * % %
Learnability * %
Samples Quality *
Samples Quantity *
Uptime * k
Sessions Number & &
Quality *
Services *

Figure 2: Honeyd evaluation

Understandability (Fair). Honeyd’s purpose of the tool
is clear and basic functionality is well defined. Advanced
functions are not explained thoroughly, however numerous
configurations possibilities are offered. The website provides
thorough functionality and design rationale.

Documentation (Poor). Honeyd’s documentation provided
in the project’s website is introductory and thus incom-
plete. Note however that software’s man-pages are precise
and clear, portray accurately the different commands Hon-
eyd can process but are not enough. A commercial book
was also written by the developer [12].

Buildability (Exzcellent). Honeyd’s prerequisites are not
difficult to meet and the different releases are available for
downloading in the project’s website.

Installability (Ezcellent). In most cases a simple com-
mand is sufficient for downloading and installing the hon-

eypot without further interaction from the user.

Learnability (Fair). Its basic functionality is easily under-

stood but given the fact that Honeyd could emulate entire
networks with blocks of IP’s and network devices, advanced
functionality is fairly trivial.

Malware Samples Quality and Quantity (Poor). Hon-
eyd is not designed to collect malware samples.

Uptime (Ezcellent). Honeyd is a very reliable honeypot
and can be functioning unattained for long periods of time
with the basic configuration.

Concurrent Sessions (Ezcellent). With the default con-
figuration Honeyd can handle with no problem up to 100 IP
addresses.

Metadata Quality (Fair). Honeyd gathers only basic in-
formation about the incoming connections and stores them
in a log file.

Emulated Services (Poor). Emulation of services listen-
ing on the ports Honeyd monitors depends on python scripts,
the most basic of which come with the honeypot. The level
of interaction these scripts provide is basic and most ad-
vanced emulation can be achieved but must be implemented
by the user.

24 Amun

Amun is a LIH available under the GNU Public Licence. It
is developed for the Unix platform and was available, at the
time of writing, for download. Amun, like Dionaea, emulates
a wide range of vulnerabilities in order to acquire samples
from autonomous spreading malware. Amun is written in
Python and has a modular design [14]. Its evaluation is
depicted in Fig. 3.

Amun Evaluation @

Excellent Fair Poor

Understandability * %

Documentation *
Buildability *
Learnability * *

b1
b
*

Samples Quality
Samples Quantity
Uptime

*
*

*t
* [t
* Pt

Sessions Number
Quality
Services

pabs
Labg

Figure 3: Amun evaluation

Understandability (Fair). Amun’s design rationale and
architectural overview is available on-line at the time of writ-
ing [14] but case studies are not available.

Documentation (Poor). The only available documenta-
tion is a text file with instructions on how to run the hon-
eypot that is contained in Amun’s .tar file.

Buildability (Poor). No instructions are available for build-
ing the honeypot in the project’s site. There is no depen-
dency management provided even though the dependencies
are available at the time of writing. Furthermore, no tests
are provided for verifying the success of the build.

Installability (Fair). The only prerequisites are the Python

programming language and Python Psyco, a library cur-
rently available on-line, but unmaintained since March 2012.

Learnability (Fair). Amun’s basic functionality can be
achieved only by starting the server.py file and waiting for
the outbound communication. More advanced functionality
can be achieved through the configuration file.

Malware Samples Quality (Exzcellent). The quality of
malware samples Amun captures is high. Additionally to
the binaries it collects during interaction, Md5 sums are gen-
erated.

Malware Samples Quantity (Fair). The modular design
of Amun does not allow the collection of zero-day exploits
limiting the quantity of threats detected.

Uptime (Ezcellent). Amun was running uninterrupted for
long periods of time during evaluation.

Concurrent Sessions (Ezcellent). A single installation of
Amun can easily handle over 100 IP’s. Several Amun servers
can run simultaneously on the same host, limited only by the
fact that one server can bound to a specific port.

Metadata Quality (Fair). According to the level of inter-
action and the type of the emulated services Amun generates
exploit details, shellcode analysis, HTTP headers, Md5 sums
etc.

Emulated Services (Fair). The emulated services quality
depends on the module that provides the emulation. The
basic modules that come with the honeypot provide an fair
emulation. Furthermore, Amun provides the user with the
ability to create new modules in XML format, not requiring
Python programming experience in return.

2.5 Conpot

Conpot is an open source, server-side LIH honeypot designed
to be easy to deploy, modify and extend [28]. It provides a
number of protocols that are capable of emulating Industrial
Control Environments. Its evaluation is depicted in Fig. 4.

Conpot Evaluation @

Excellent Fair Poor

[* %

D *
Buildability * K
Instalability * *
Learnability * %

Samples Quality *

Samples Quantity *

Uptime * &k Kk

Sessions Number & k&

Quality * *
Services * %

Figure 4: Conpot evaluation

Understandability (Fair). Conpot’s purpose is clear and
its basic functions are easily understood whereas the ad-
vanced functionality demands specialized background in In-
dustrial Control Systems, as well as knowledge of the specific
hardware and software used in these systems.

Documentation (Poor). The project’s website only con-

tains a high level description of Conpot’s functionality and
only a very basic information about its installation and us-
age.

Buildability (Fair). The tool is written in Python and
presents a modular design. Various third party dependencies
are required in order to build Conpot but are documented
in the project’s website and no problems should be faced if
the directions are strictly followed.

Installability (Fair). Conpot is available in PyPi and can
be easily installed with a single command. Installation in-
structions are available on the project’s website; although
third party dependencies are not provided, all were avail-
able on-line at the time of writing.

Learnability (Fair). It is easy to achieve basic functional-
ity based on the default configuration file. Advanced func-
tionality on the other hand is considerably much harder
given the fact that advanced background in Industrial Con-

trol System’s hardware, software and connectivity is required.

Malware Samples Quality and Quantity (Poor). Con-
pot is not yet capable of providing malware collecting ca-
pabilities, but instead to provide the emulation of an ICS
system gathering information about automated threats and
statistic information.

Uptime (Ezcellent). Even though the experimental setup
was scanned several times by adversaries during testing time,
the system did not crash or halt functioning.

Concurrent Sessions (Ezcellent). Conpot provides the
ability to deploy several configurations with multiple slave
systems adding to the system’s deception potential.

Metadata Quality (Fair). Even though the most critical
information such as timestamps, IP’s and instructions to the
emulated PLC’s are logged, a database integration would be
a major improvement.

Emulated Services (Fair). Even though complex installa-
tions can be achieved, the Web-HMI Conpot provides is very
basic and when the emulated S7 PLC is probed by specific
scanners it can be easily distinguished from a production
system.

2.6 Valhala

Valhala is a free LIH designed for the Windows operating
system. Even though it is not able to collect malware sam-
ples, Valhala can emulate several services and provide im-
portant statistical information regarding: http, ftp, tftp, fin-
ger, pop3, smtp, echo, daytime, telnet, port forwarding. Its
evaluation is depicted in Fig. 5.

Understandability (Exzcellent). The purpose of Valhala
is clear and both basic and advanced functionality is eas-
ily achieved through a friendly graphical user interface. A
high level description of its functionality is available on the
website.

Documentation (Poor). No documentation is available on
the project’s website or in the software.

Valhala Evaluation @

Excellent Fair Poor
Understandability & & 5

D *
i * k %
Instalability * * X
Learnability *
Samples Quality *
Samples Quantity *

Uptime * *
Sessions Number
Metadata Quality
Services

%
4%

Figure 5: Valhala evaluation

Buildability /Installability (Ezcellent). The program is
available in a precompiled executable file and does not re-
quire any form of complicate build/installation actions.

Learnability (Ezcellent). The program is self explanatory
and minimum interaction is enough to familiarize with the
software.

Malware Samples Quality /Quantity (Poor). Valhala is
not designed to collect malware samples.

Uptime (Ezcellent). During the evaluation period no inter-
action caused disruptions in Valhala’s operation.

Concurrent Sessions (Fair). Although Valhala can listen
on many ports emulating a sufficient amount of services it
can only use one IP address limiting its research potentials.

Metadata Quality (Fair). Time, source IP, service and
related information are captured and stored in log files. Val-
hala also supports automated e-mailing for the logfiles which
could prove useful for remote administration.

Emulated Services (Fair). A consistent emulation of the
supported services is provided to the adversary constituting
Valhala a competent tool for gathering important informa-
tion about malware activity.

3. HONEYPOTS AGAINST APTS

Traditional security mechanisms that focus on perimeter se-
curity are inadequate to encounter APT’s and, in addition,
they provide minimal to zero insight of the attack. Honey-
pots produce no false positives or negatives, a characteristic
of invaluable importance in the fight against APT’s.

3.1 Stuxnet

Stuxnet’s ultimate goal was to alter an ICS functionality
(e.g., the control of IR-1 centrifuges used by the Iranian
nuclear reactors [21]) by reprogramming its Programmable
Logic Controllers and hide the changes from the system
operator. It used zero-day exploits, Windows-specific and
PLC-specific rootkits, antivirus evasion, process injection
and hooking, network infection routines, peer-to-peer up-
dates and a C&C interface [17].

The installation of an LIH such as Conpot, or an actual PLC
with no production functionality could indicate the attack
factor and the threat could have been eliminated much ear-
lier. A hypothetical architecture is portrayed in Fig. 6. A

honeypot such as Conpot acting as an actual PLC would
have been probed by the infected with Stuxnet EWS (En-
gineering Work Station), indicating the attack at an early
stage.

IR-1 CENTRIFUGE IR-1 CENTRIFUGE

i
A
iy
- AL |

INTERNET

J

— e~
e N

E g E
@ PRODUCTION N S

D HoNEYPOT
PLC
®
o & &

INFECTED I .
use \
KeY

ENGINEERING
WORKSTATION

Figure 6: Hypothetical architecture against Stuxnet

3.2 Duqu

Duqu’s main purpose is to gather information and assets
from industrial infrastructure and system manufacturers or-
ganizations in order to attack other third parties [2, 22].
It seeks specific information such as design documents that
could help the attackers onset various industrial control sys-
tem facilities [19]. Its tactics include a keylogger and com-
munication with a C&C server.

INTERNET

— >~
: »m A
‘ &
: cale— -
|
|
|
|
‘ ! =
I ! s
I /
| \
|
|
|
| <
! PRODUCTION
| YSTE

PRODUCTION
SYSTEM

LOW INTERACTION

Figure 7: Hypothetical architecture against Duqu

After the establishment of communication with the server
a jpeg image is being transferred that is followed by a bi-
nary file [19]. A typical LIH could easily realize the attack
(Fig. 7). Even though Duqu is triggered by downloading an
infected e-mail attachment, it further infects systems con-
nected to the network in an attempt to mitigate the risk of
detection. This exact behaviour would have been detected
by the LIH, gathering the sample and indicating the sign of
compromise.

3.3 Flame

Also known as sKyWIper, Viper or Wiper [23] Flame tar-
gets Windows-based PCs. It collects information in multi-
ple ways such as key-logging, taking screen-shots, enabling
microphone and camera, gathering files from the infected
system [3]. It may also enable a Bluetooth receiver -if avail-
able on the target machine- and collects information about
nearby devices or broadcasts information regarding the com-
promised system [1].

Since Flame uses Bluetooth services to collect information
about the compromised system, that unique characteristic
could be used against it with the aid of Bluetooth honey-
pot technology [13, 15] (Fig. 8). The infected system would
eventually broadcast bluetooth information that could pos-
sibly be captured by a bluetooth specific honeypot leading
to an early indication of the compromise.

"

PHISING E-MAIL

FLAME INFECTED
SYSTEM

INITIAL INFECTION ‘WH'
Lis

LAN DEvnge/
INFECTED g
WEBSITES
/ LAN DEVICE
»
USB KEY l

BLUETOOTH
ENABLED
DEVICE

BLUETOOTH
HONEYPOT

Figure 8: Hypothetical architecture against Flame

3.4 Gauss

Gauss shares a lot of similarities with Flame, mainly regard-
ing the code base and the C&C communication system. It
has been actively distributed in the Middle East [26].

INTERNE MALICIOUS
ENTITY
3
@
& f
|
————— R

% |
.. \s—+7ﬂ.m

TERMINAL
HONEY-TOKENS

TERMINAL
Figure 9: Hypothetical architecture against Gauss

Gauss, similarly to Flame and Duqu, focuses on exfiltrating
information designed with emphasis on the maximization
of the collected information. This particular characteristic
could be its Achilles’ heel if provided with honey-tokens, as
depicted in Fig. 9. For example, Gauss attempts to steal

information regarding banking information. Specific honey-
tokens such as fake credit card number and PIN information
could easily indicate the attack if the tokens are used in fu-
ture time.

4. CONCLUSIONS

The honeypot software evaluation that was carried out in
this study indicates that even though the level of honeypot
technology -in terms of productivity- is considerably tran-
scendent most of the evaluated honeypots do not fully com-
ply with Software Sustainability Institutes software evalua-
tion standards. On the other hand, in this study we argue
that traditional perimeter security approach is inadequate
against future generation malware and Advanced Persistent
Threats. The more persistent and targeted the threat is the
more risk must be inevitably undertaken by the defendant
in order to champion her assets. Honeypots could prove
of invaluable importance in the fight against future attacks
deriving both from APTs and human adversaries equally.

5. REFERENCES

[1] Lazar, Marian. Computer viruses as espionage
instruments. the case of flame virus. page, 494.

[2] Protected, Wifi. More links between duqu, stuxnet and
other malware.

[3] Fiaidhi, Jinan and Gelogo, Yvette E. Scada cyber
attacks and security vulnerabilities: Review.

[4] Skoudis, Ed and others. Counter Hack. Prentice Hall
PTR Upper Saddle River, New Jersey, 2002.

[5] Zhang, Feng and Zhou, Shijie and Qin, Zhiguang and
Liu, Jinde. Honeypot: a supplemented active defense
system for network security. pages, 231-235. IEEE, 2003.

[6] Spitzner, Lance. volume, 1. Addison-Wesley Reading,
2003.

[7] Jiang, Xuxian and Xu, Dongyan. Collapsar: A
vm-based architecture for network attack detention
center. pages, 1528, 2004.

[8] Provos, Niels. A virtual honeypot framework. volume,
173, 2004.

[9] Sadasivam, Karthik and Samudrala, Banuprasad and
Yang, T Andrew. Design of network security projects
using honeypots. Journal of Computing Sciences in
Colleges, 20(4):282-293, 2005.

[10] Moser, Andreas and Kruegel, Christopher and Kirda,
Engin. Exploring multiple execution paths for malware
analysis. pages, 231-245. IEEE, 2007.

[11] Mokube, Iyatiti and Adams, Michele. Honeypots:
concepts, approaches, and challenges. pages, 321-326.
ACM, 2007.

[12] Provos, Niels and Holz, Thorsten. Virtual honeypots:
from botnet tracking to intrusion detection. Pearson
Education, 2007.

[13] OConnor, Terrence and Reeves, Douglas. Bluetooth
network-based misuse detection. pages, 377-391. IEEE,
2008.

[14] Gébel, Jan Gerrit. Amun: A python honeypot. 2009.

[15] Galante, Antonio and Kokos, Ary and Zanero,
Stefano. Bluebat: Towards practical bluetooth
honeypots. pages, 1-6. IEEE, 2009.

[16] Alosefer, Yaser and Rana, Omer. Honeyware: a
web-based low interaction client honeypot. pages,

410-417. IEEE, 2010.

[17] Schneier, Bruce. The story behind the stuxnet virus.
Forbes. com, 2010.

[18] Tankard, Colin. Advanced persistent threats and how
to monitor and deter them. Network security,
2011(8):16-19, 2011.

[19] Bencséath, Boldizsér and Pék, Gdbor and Buttyén,
Levente and Félegyhdzi, Mark. Duqu: A stuxnet-like
malware found in the wild. CrySyS Lab Technical
Report, 14, 2011.

[20] Jackson, Crouch, Baxter. Software evaluation:
Criteria-based assessment, 2011.

[21] Albright, David and Brannan, Paul and Walrond,
Christina. Stuxnet malware and natanz: Update of isis
december 22, 2010 report. Institute for Science and
International Security ISIS Reports, 2011.

[22] Bencsédth, Boldizsar and Pék, Gébor and Buttyén,
Levente and Félegyhdazi, Mark. The cousins of stuxnet:
Duqu, flame, and gauss. Future Internet, 4(4):971-1003,
2012.

[23] Walter, Jim. Flame attacks: Briefing and indicators of
compromise. McAfee Labs, May, 2012.

[24] Grudziecki, Jacewicz, Juszczyk, Kijewski, Pawlinski.
Proactive detection of security incidents, honeypots,
2012.

[25] Sood, Aditya K and Bansal, Rohit and Enbody,
Richard J. Cybercrime: Dissecting the state of
underground enterprise. leee internet computing, 17(1),
2013.

[26] Kushner, David. The real story of stuxnet. Spectrum,
IEEE, 50(3):48-53, 2013.

[27] Virvilis, Nikos and Gritzalis, Dimitris and
Apostolopoulos, Theodoros. Trusted computing vs.
advanced persistent threats: Can a defender win this
game? pages, 396-403. IEEE, 2013.

[28] Lukas ’glaslos’ Rist. Conpot ics/scada honeypot, May
2014.

[29] University of Edinburgh on behalf of the Software
Sustainability Insitute. The software sustainability
institute, May 2014.

