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Abstract. A network worm is a specific type of malicious software
that self propagates by exploiting application vulnerabilities in network-
connected systems. Worm propagation models are mathematical models
that attempt to capture the propagation dynamics of scanning worms as
a means to understand their behaviour. It turns out that the emerged
scalability in worm propagation plays an important role in order to de-
scribe the propagation in a realistic way. On the other hand human-
based countermeasures also drastically affect the propagation in time
and space. This work elaborates on a recent propagation model [1] that
makes use of Partial Differential Equations in order to treat correctly
scalability and non-uniform behaviour (e.g., local preference worms). The
aforementioned gradient model is extended in order to take into account
human-based countermeasures that influence the propagation of local-
preference worms in the Internet. Certain aspects of scalability emerged
in random and local preference strategies are also discussed by means
of random field considerations. As a result the size of a critical network
that needs to be studied in order to describe the global propagation of a
scanning worm is estimated. Finally, we present simulation results that
validate the proposed analytical results and demonstrate the higher prop-
agation rate of local preference worms compared with random scanning
worms.
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1 Introduction

A network worm is a specific type of malicious software that self propagates
by exploiting application vulnerabilities in network-connected systems. During
recent years, several worms have caused significant damage in corporate and
Internet core networks [2–6]. While early worms followed rather random spread
patterns and aimed mostly at Denial of Service attacks, future worms are ex-
pected to adopt advanced scanning strategies and even bear a catastrophic pay-
load [7–10]. A fast spreading worm armed with a priori information about the
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distribution of vulnerable nodes in the underlying infrastructure [10] may also
perform targeted attacks and bring down the majority of the target networks
within a short time interval. Securing networks against worm attacks is par-
ticularly important for critical infrastructure applications, such as banking and
financial applications, emergency deployment services and military applications.

Among the various strategies that worms can follow for scanning vulnerable
hosts [7, 11] two strategies have been primarily considered: a) random scanning
worms (e.g., Code Red I [3], Slammer [4]) uniformly scan the 32-bit IP ad-
dress space to find and infect vulnerable targets; b) local preference worms (e.g.,
Blaster [5], Coder Red II [3], Nimda [2]) preferably infect “neighbouring” hosts
(e.g. within a specific /8, /16 or /24 address block) within a network. It has been
shown that local preference worms spread faster, compared to random scanning
worms, when the vulnerable hosts in the Internet are unevenly distributed, which
is a realistic assumption [10]. Such network-aware worms tend to infect clusters
of nodes, often with similar application vulnerabilities, before moving to other
networks. It is also expected that in the future, when the IPv6 will be a real-
ity, local preference may be an optimal scanning strategy for worms, given the
infeasibility of randomly scanning the entire 128-bit address space [12].

From a security point of view, most traditional techniques for controlling
worm intrusions involve human intervention and are mainly preventive (e.g.,
firewall policies and network perimeter, patch strategies, network segmentation,
updating virus scanners, removing hosts from the network), aiming at reducing
the risk of infection from a scanning worm. Some of these could also be seen as
reactive measures that aim to reduce the exposure of a network to an already
active worm. Recently, much attention has also been shed on detection measures
with automated real-time monitoring. Detection strategies can also be catego-
rized into local and global strategies. For example, Intrusion Detection Systems
(IDS) can be used to detect traffic anomalies in the internal network [13–15].
While such local monitoring strategies can be effective in early detecting and
raise threshold alarms within an organization, they may not be able to cap-
ture the global behaviour of a worm in the Internet, due to the heterogeneity
of the various local networks. On the other hand, a global monitoring strategy
often uses a centrally controlled Internet infrastructure which gathers log data
from geographically distributed systems. Such strategies make use of highly dis-
tributed network telescopes or honeypots to attract and identify attackers [16].
Admittedly it also seems difficult to setup global monitoring infrastructures that
require a very large monitored network to become effective [13].

Worm propagation models are epidemiological models that capture the prop-
agation dynamics of scanning worms as a means to understand the behaviour
of various worm types. Studying the behaviour of a scanning worm can also
help towards designing and evaluating strategies for monitoring and early de-
tection, as well as predicting the time limits for early response. While it seems
hard to create realistic models mainly due to the heterogeneity of the Internet
networks, recent analytical models (e.g., [7, 17]) have been validated with simu-
lation results that approximate the behaviour of random scanning worms such as
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the Code Red and Slammer worms, for which real measurements are disposable
on the Internet. Worm propagation models extend the classical epidemiological
model [18] to describe the behaviour of a worm. The first complete application of
mathematical models to computer virus propagation was proposed in [19]. Tra-
ditionally, propagation models are given names according to the possible states
of the host population. For example, the simple epidemic model in [7] is a SI
(Susceptible-Infected) model which describes random scanning worms that peak
before a remedy is deployed. This model was extended in [17] to include hosts
that are Recovered (i.e., a SIR model) for example as a result of installing a
patch or a virus scanner. The work in [11] also modelled local preference worms
following the SI approach. In another example, a model where susceptible hosts
can become infected and then go back to a susceptible state (e.g., as a result
of resetting a system where the propagation code resides in the main memory),
is called a SIS model [16]. Other models take into account the fact that nodes
can be isolated (e.g., powered down or quarantined) in an attempt to mitigate
the worm propagation (e.g., [20]). Furthermore, there are models that attempt
to take into account various non-uniformities of the underlying networks: for
example, worm propagation may be influenced by bandwidth variations and
congestion [21, 16, 22] or by the non-uniform behaviour of the worm itself (e.g.
a worm with varying scan rate) [14].

To the best of our knowledge, most worm propagation models found in the
literature make use of Ordinary Differential Equations (ODE) to describe the
phenomenon. Unfortunately, results based on ODEs do not describe the spatial
behaviour of the worm propagation phenomena, and thus do not properly ad-
dress scalability issues (e.g., an ODE model will fail to tell how infected a specific
area in space becomes). In a recent model proposed in [1] the classical model
was extended by incorporating spatial interactions between and within networks
and an evolution equation for worm propagation into an arbitrary subnet was
proposed. According to the formalism, the notion of a critical network size (here-
inafter called a critical network) was also introduced. It was suggested that the
worm propagation within such a critical network may be considered in order
to predict the global propagation of the worm in the Internet. The formalism
can take into account non-uniformities that are due either to local interactions
between neighbouring subnets (e.g. as a result of a local preference strategy) or
to the heterogeneity of the underlying infrastructure, (e.g. bandwidth variations,
different topologies, human countermeasures etc.).

Our Contribution. In this work we elaborate on the recent gradient model of
[1] by introducing an appropriate new term which models human intervention
(i.e., preventive and/or reactive measures that mitigate the worm propagation),
thus better approximating the real-world behaviour of scanning worms and of the
host population in the Internet. Furthermore, we study the dynamics of the new
model and give an emphasis to explaining the higher propagation rates of local-
preference worm strategies (as observed in real measurements), compared with
the propagation rates of random scanning worms. Moreover, the powerfulness
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of gradient models to describe scalability of worm propagation in terms of spa-
tiotemporal interactions between infected hosts, is demonstrated. It is claimed
that the gradient models point towards a theory of scalability which is missing
from the literature on worm propagation. Finally, we make use of random field
considerations in order to estimate the size of a critical network, which needs
to be studied in order to describe the global propagation of a scanning worm.
Throughout the paper, we validate our estimates and analytical results with
simulation outcomes.

Organization of the paper. In Section 2 we briefly present the results of the
approach in [1]. In Section 3 we make random field considerations to estimate the
size of the critical network. In Section 4 we present a new model that incorporates
human intervention in the model of [1], and analytically solve our equations. In
Section 5 we present simulation results that validate our theoretical estimates,
while Section 6 concludes the paper.

2 A brief review of the gradient model

This section briefly describes the model proposed in [1]. Let Ni be the number of
susceptible hosts in the i-th subnet and Ii the infected hosts in the same subnet.
Suppose that K is the average propagation speed of the worm and in a first
approximation let us say that it is constant in every single subnet. Assuming
a random scanning strategy, there is a probability PIN that a host inside the
subnet targets a host inside the same subnet and a probability POUT that instead
it attacks another subnet. Following the line of [1], starting from a continuous
evolution equation of the form,

da(x, t)
dt

= K
Ns

N
(1− a(x, t))[

∫
a(y, t)dy] (1)

and using a Taylor expansion around x (y = x+ r), we end up with a spatial
generalization of the simple epidemic model (in order to capture interactions
between subnets either due to Internet non-uniformities or due to non-uniform
scanning strategies)

daX

dt
= K

Ns

N
(1− aX)

∫
(aX + r

ϑaX

ϑx
+

1
2
r2 ϑ2aX

ϑx2
)dr (2)

where aX = a(x, t) is the fraction of the infected hosts, n = NTotal/Ns is the
number of subnets in the Internet which has a total of NTotal susceptible hosts
and Ns is the size of the subnets.

Assuming a uniform scanning strategy and a homogeneous network infras-
tructure, the number of infected hosts uniformly increases within the Internet.
As a result a uniform spatial distribution emerges and the spatial partial deriva-
tives in Eq. (2) vanish. In this scenario the following evolution equations were
derived,
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daX

dt
= KaX(1− aX) (3)

da

dt
= Ka(1− a) (4)

where a = (1/NTotal)
∫

n
NSaXdr is the total or average density of infected

hosts in the Internet.
Comparing Eq. (3) and Eq. (4) it is clear that when no non-uniformities are

present, the average behaviour of a worm population in the Internet coincides
with its behaviour in any network of arbitrary size (the smallest size limited to
scales where discrete behaviour is not present).

When a local preference scanning strategy is assumed, there is a uniform
probability to scan addresses in the same “/m” prefix network. As a result a
non-uniform distribution of infected hosts emerges and the spatial derivatives in
Eq. (2) are no longer negligible. The following evolution equation holds,

daX

dt
= Ns(1− aX){[β′ + (Q− 1)β′′]aX + β′c

ϑ2aX

ϑx2
} (5)

where β = η/Ω is called the pairwise rate of infection (η is an average
scan rate and Ω is the total number of IP addresses), β′ and β′′ are pairwise
rates of infection in local and remote scan respectively (β′ = pη/232−m , β′′ =
(1−p)η/(Q−1)232−m where Q is the number of “/m” prefix networks in Ω) and
c = (1/2)

∫
Qx

r2dr. Eq. (5) provides a specific law of worm propagation for a local
preference scanning strategy taking into account the resulting heterogeneities.

Our formalism introduces as a crucial model parameter, the gradient coeffi-
cient c which is a measure of the size of the critical network, i.e. a representative
neighbourhood of subnets. This means that in a neighbourhood of this scale
the worm population proceeds independently. As a result, the evolution of the
worm population within the critical network coincides with the evolution of the
population in the Internet as a whole. In Section 3 we use random field consid-
erations to provide an estimate on the critical network size. Furthermore, while
the spatial model proposed by [1] is able to take into account and model inter-
actions between infected hosts, thus introducing the notion and existence of a
critical network, no effort has been given to incorporate a number of factors that
influence the propagation of a worm in the Internet, such as human intervention,
e.g., preventive and reactive measures against scanning worms. In Section 4 we
will incorporate such human-based actions in order to achieve a more realistic
understanding of local preference worm propagation strategies in the Internet.

3 Random field considerations

It is well known that either in physical or in artificial systems, complex dynamics
may emerge due to multiple or long range interactions. As a result, complex
structures are developed and a variety of critical phenomena may arise. In this
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context, worm propagation in the Internet may be viewed as an artificial dynamic
system the evolution of which could be affected by random and/or scale effects.

In order to examine these dynamics and especially the spatial behaviour of
worm propagation in the Internet, we may apply well established tools of sta-
tistical methods from other fields. The connection with the formalism proposed
in [1] is based on the underlying idea that it is possible to describe the average
worm behaviour in a deterministic way, by considering a critical scale of net-
work size. In this critical scale, it is possible to write down an evolution equation
(e.g. Eq. (5)) where the random effects in scales below that size (e.g. in smaller
subnets), can be taken into account with the introduction of the appropriate
gradient terms. At this point, a crucial question arises, i.e. whether there is such
a scale or an hierarchy of scales emerges.

In the context of probability theory the above question can be treated with
the notion of moving averages [23] and the existence or not of the corresponding
correlation length. From a stationary random process r(x) with mean r and
variance s2 a family of moving average processes rT (x) may be obtained as

rT (x) =
1
T

∫ x+T/2

x−T/2

r(x)dx (6)

where T denotes the averaging “window” in space. We define the variance
function γ(T ) = s2

T /s2 as the ratio of the variances of the resulting average
pattern (after smoothing with average window T ) over the original one. Then for
a general class of processes the following relation holds (m is a pattern parameter
and λ is the corresponding correlation length of the pattern)

γ(T ) = [1 + (
λ

T
)m]−1/m (7)

or for fractal patterns (b is a parameter correlated to the fractal dimension)

γ(T ) ∝ T−b (8)

As a result given the spatial pattern of worm propagation in the Internet
(this consists of a sequence of 0’s for non infected hosts and 1’s for infected
hosts) we can estimate pattern data points using the definition γ(T ) = s2

T /s2.
Plotting these points and fitting the curve of Eq. (7,8) we may estimate the curve
parameters λ, m or b. This procedure is depicted in Fig. (1) for random scanning
and Fig. (2) for local preference, where the spatial pattern was taken from sim-
ulation results. Solid curves in both figures represent a power law behaviour. It
is evident that in the case of random scanning the resulting worm propagation
pattern over the Internet is a fractal and, as also predicted in [1], the evolution
of the worm population in any size of selected subnets (the only limitation is
to be large enough so that the phenomenon is not discrete) coincides with the
evolution of the worm population in the Internet. On the other hand, in case
of a local preference strategy this result breaks down. Indeed, as can be seen
in Fig. (2) the power law behaviour does not fit correctly the simulation data.
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Fig. 1. Estimated variance function for Random Scanning

In this case, exponential-like variance functions of the form of Eq. (7) are more
appropriate.
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Fig. 2. Estimated variance function for Local Preference scanning

This result is an evidence for the existence of a correlation length of the
worm pattern in the Internet. In probability theory this defines a critical scale
of fluctuations which coincides with the critical network size in our analysis.
Below that scale worm propagation is affected by the interactions from neigh-
bouring hosts while for scales above the critical one, worm propagation proceeds
independently. Again these findings confirm the results suggested in [1].
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Note that our simulation for local preference was based on a Blaster-like
worm, where the worm targeted neighbouring nodes with 60% probability, while
performing random scanning with a probability of 40%. This means that the
resulting pattern consists of the interplay of two evolution dynamics. In a first
approximation, fitting the simulation data in Fig. (2), our analysis demonstrates
the existence of a correlation length of the order of 170 for local preference.
Taking into account that there is a linear relation between this correlation length
and the size of the critical network (the coefficient being of the order of four) a
value of 700 hosts is finally estimated as the size of the critical network.

Given the limitations of our approach, the values of the size of a critical net-
work are of great significance. The knowledge of such values could be used to fill
the gap between local and global monitoring strategies so that a representative
neighborhood of subnets could be used in order to study the global behaviour
of a worm in an effective and affordable way.

4 Incorporating human intervention in worm propagation

In order to take into account human intervention in local preference scan strate-
gies in the initial model proposed in Eq. (5) it is necessary to introduce an
appropriate loss term. The following gradient model is proposed,

daX

dt
= K ′aX(1− aX)− g(aX) + c′(aX)

ϑ2aX

ϑx2
(9)

where the abbreviations for the rate K ′ = NS [β′+(Q−1)β′′] and the gradient
coefficient c′(aX) = β′NS(1− aX)c was used while the new term g(aX) models
human intervention. The following analytical form for g(aX) is adopted,

g(aX) = g1
a2

X

g2
2 + a2

X

(10)

where g1.g2 are appropriate constants. This kind of loss term was previously
used in other fields in order to model population dynamics (e.g., [24]). The
following properties hold: for early spread, i.e., for aX → 0, g(aX) ' a2

X which
is equivalent to say that initially the reduction of infected hosts is very low, while
near saturation aX → 1, g(aX) ' g1, i.e., the rate of reduction of infected hosts
reaches a high constant rate at a specific time after the release of the worm. This
kind of behaviour is appropriate for worm spreading problems since in the real
word, not too many hosts are initially aware of the presence of a new worm and
as a result little effort is paid to mitigating its propagation. On the contrary, in
the course of time more and more hosts are aware of the worm spreading and
appropriate actions (both preventive and reactive) usually take place.

In order to evaluate the role of the proposed model in Eq. (9), and especially
the role of the gradient term (which models local preference worm strategies) in
the worm’s propagation rate, the two versions of Eq. (9) with and without the
gradient term, are considered. Furthermore, it is assumed that initially a more
or less uniform distribution of nuclei of infected hosts emerge in the network
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(this is equivalent to assuming a quite common spatial solution of the form
aX(x) = [Bcosh(x/A)]−2 emerges independently in each critical network, see
for example in [25]). For this scenario and for the initial time states (i.e., for
aX → 0, g(aX) ' a2

X) of worm spreading, the time derivatives of Eq.(9) with
and without the gradient term are depicted in Fig. (3), for arbitrary model
parameters.

R

maxN
1LP

maxN
2LP

max
N

random 

Local preference I 

Local preference II 

dt

dN

N

Fig. 3. Approximating analytical results of the gradient model with a loss term

It can be seen that when a random scanning strategy is adopted then the
corresponding model without the gradient term shows a low overall propaga-
tion rate while for a local preference strategy the corresponding model with the
gradient term shows a higher overall propagation rate. As a consequence, the de-
picted analytical results confirm real measurements for local preference worms,
which report faster propagation rates compared with random scanning worms.
Moreover, recalling that c′(aX) = β′NS(1 − aX)c, the stronger the local pref-
erence behaviour the higher contribution of the gradient term e.g., the faster
propagation rate as depicted with the dashed curves in Fig. (3).

Furthermore, the analytical results depicted in Fig. (3), show that the dy-
namic without the gradient term (e.g., random scanning) reaches a maximum
number of infected hosts NR

max which is considerably lower than that reached
when the gradient term enters the dynamics, NLP1

max or NLP2
max (local preference

strategy). Thus, another outcome of the proposed model is that a local prefer-
ence strategy not only obtains higher propagation rate but also results in much
higher damage in the network.

However, as one of the main results of the present work, it is noted that
human intervention during worm spreading can be modelled and quantified in
the framework of the proposed model by means of only three model parameters,
mainly g1, g2, NS . This is not always an easy task and appropriate values can
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be estimated only by calibrating model behaviour with real data. The powerful-
ness of the new model is that the calibration can be done at the beginning of
worm propagation. As a result it may be possible to predict on time the future
behaviour of the worm. For a robust calibration one should note that the new
introduced term g(aX) captures healing of hosts that return, for some reason,
to a susceptible state (i.e., hosts that follow the SIS model). In order to incor-
porate other preventive and/or reactive countermeasures (e.g., firewall policies,
patch strategies, updating virus scanners or removing hosts from the network),
a dynamic reduction of the size NS of the susceptible hosts in Eq. (9) must be
considered.

5 Exploring scalability in local preference strategies

As pointed out earlier, the so called gradient model for local preference worm
strategies is able to capture the spatial behaviour of spreading worms. This can
be done by means of a characteristic length entering to the corresponding gradi-
ent coefficient. The origin of this characteristic length relies on the interactions
between hosts and determines the size of the critical network. Note that the
smaller the gradient coefficient the smaller the characteristic length, e.g., the
smaller the size of the critical network. Once more here it is emphasized that
the existence of a critical network guaranties that an observation of the worm
propagation within the critical network may lead to a robust measure of the
worm propagation in the entire network. As a result, in the framework of gradi-
ent models there is the possibility to address scalability analytically and further
it is possible to measure (and quantify) the effect of the critical network size to
worm propagation behaviour.

Under this interpretation, the proposed model in this work suggests that
during worm propagation the characteristic length of the dynamics of the system
changes since c′(aX) = β′NS(1 − aX)c is a function of aX . Furthermore, the
model predicts that initially a critical network for robust monitoring of worm
propagation has a maximum size (since c′(aX) is maximum for aX → 0) and in
the course of time this decreases and finally for aX → 1 the spreading behaviour
coincides with a random scan strategy. This is an unexpected result and it is
demonstrated later in this section by means of simulation results. Intuitively
this can be understood since, in local preference scanning strategies, initially the
density of infected hosts proceeds heterogeneously, while as the network goes to
saturation the density of infected hosts tends to be homogeneous, e.g., at any
subnet it is almost equal to unity.

In order to verify the predictions of the proposed model presented in the
previous and current sections, a simple discrete event simulator has been built.
This setup is equivalent to a /16 network, describing a total number of 256 LAN
clusters with each LAN having 256 hosts. All hosts are initially susceptible to
worm infection and a single host in an arbitrary LAN is in infected state. The
simulated worm performs 1 infection probe per time unit, something that leads to
a rough correspondence of 1 ms per time step. Connection establishment delays
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are disregarded, as a UDP packet scanning method is assumed to be used. The
simulator distinguishes between two types of probe propagation delays: 10 time
units for intra-LAN and 100 time units for inter-LAN infection propagation.

In the first phase of simulation, a local preference strategy for address scan-
ning was selected. No human countermeasures were accounted for, enabling thus
the isolation and validation of the gradient term of the model-theoretical anal-
ysis. Probing subnets of various sizes have been used, containing part of, total,
or aggregation of LANs with 128, 256 or 512 host per subnet, accordingly.

In Figure 4, the evolution of infection density of arbitrary selected subnets is
compared to the global infection density evolution of the whole simulated setup.
During the outbreak phase of the worm infection, locally probed estimations of
the infection are not following accurately the global infection numbers. In the
case of subnets with size 128 or 256 probes (that is, probing was accomplished
within a sole LAN), there appears an average error of 40% in the estimation of the
global infection density. When a critical size of 512 hosts is considered, involving
the aggregation of 2 LANs in a probing subnet, the corresponding estimation
error is of the order of 15%. On the other hand, near the saturation phase of
infection, we observe that the behavior of the worm propagation in different
size subnets coincides. This confirms the theoretical result stated earlier in this
section, i.e., that near the saturation local preference worms behave the same as
random scanning worms.

Fig. 4. Infection density in arbitrary probing subnets compared to global density

In the second part of simulation experiments, a constant rate of one per
thousand of the total number of hosts is assumed to be immunized in each time
step, accounting for preventive countermeasures in the setup. In order to capture
the human initiated healing of infected hosts an additional disinfection action
is performed in each time step, which returns a number of infected hosts to the
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susceptible state. This number of healed hosts per time step is proportional (one
per thousand) to the square of infected hosts within a LAN cluster, as long as
the number of infected hosts in the LAN is kept low, but stabilizes later at 0.25%
when the number of infected hosts overpasses one half of the total available hosts
in the LAN.

Two distinct cases of address scanning strategies have been simulated: In the
first case, the generated addresses have a uniform (random) distribution, disre-
garding any information about locality of LAN clusters. Each infection probe
can target any other host in the entire simulated setup with equal probability.
In the second case, the worm exhibits a local preference in the probe addresses it
generates. Following the characteristics of a Blaster-like worm, 40% of the gener-
ated addresses target other hosts in the same LAN cluster, while the remaining
60% target hosts in random LANs.

In both cases, the evolution of the number of infected hosts through time is
being tracked, in order to compare and validate the model-theoretically predicted
behavior of worm propagation.

Fig. 5. Number of infected hosts in total simulated setup

As depicted in simulation results of Figure 5, the outbreak of infection is
faster with the local preference scanning strategy and the peak value of infected
hosts is higher compared to the relevant results of random scanning. The two
simulation outcomes are with strict accordance to the model-theoretical pre-
dictions presented in Section 4. Moreover, it is clearly shown in Figure 5 that
the immunization constant rate procedure is the dominant characteristic after
reaching peak values of infected hosts in both uniform and local preference cases.
This leads to a similar ending phase of infection evolution.
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6 Conclusions

The design of techniques and strategies for an effective, affordable and imple-
mentable resistance against future worms will be a research challenge in the years
to come. Given the apparent inadequacy of existing proactive strategies to deal
with advanced, fast spreading worms, monitoring and intrusion detection can be
seen as another layer of protection, complementary to preventive and reactive
security (e.g., firewall and disinfection technologies). IDS technology could take
advantage of the knowledge gained by recent worm propagation models that at-
tempt to describe how a worm is propagated, by using mathematical equations.

This work elaborated on a recent worm propagation model [1], where it was
shown that there is a representative neighborhood of hosts of appropriate size
over which the evolution of worm population follows correctly the evolution of
the population in the Internet. More specifically, in this work a loss term is
added to describe the reduction of the worm population, caused by preventive
and/or reactive countermeasures. Furthermore, we explain analytically and then
demonstrate, with simulation results, the fact that local preference worms spread
faster and result in greater damage compared with random scanning worms. This
work can be used to better describe the real-world behavior of local preference
scanning worms in the Internet.

Finally, a theoretical framework for addressing scalability of worm propaga-
tion in the Internet was proposed via gradient models. More specifically it was
shown that a hierarchy of critical network sizes is present during local preference
worm propagation. In general, it is stated that gradient models are a very valu-
able tool in order to address scalability. In order to understand this, note that
the characteristics of scalability depend on the characteristics of worm propaga-
tion strategies and on the network infrastructure. On the other hand we show
that those characteristics determine the expression of the corresponding gradient
term. As a result, we believe that correct estimation of the gradient coefficient
for a scanning worm could be used to predict its scaled propagation.
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15. Morin, B., Mé, L.: Intrusion detection and virology: an analysis of differences,
similarities and complementariness. Journal in Computer Virology 3 (2007) 39–49

16. Serazzi, G., Zanero, S.: Computer virus propagation models. In: MASCOTS
Tutorials. Volume 2965 of Lecture Notes in Computer Science., Springer (2003)
26–50

17. Zou, C.C., Gong, W., Towsley, D.: Code red worm propagation modeling and
analysis. In: CCS ’02: Proceedings of the 9th ACM conference on Computer and
communications security, New York, NY, USA, ACM (2002) 138–147

18. Anderson, R.M., May, R.M.: Infectious diseases of humans: dynamics and control.
Oxford Science Publications (1992)

19. Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer
viruses. In: IEEE Symposium on Security and Privacy. (1991) 343–361

20. Onwubiko, C., Lenaghan, A., Hebbes, L.: An improved worm mitigation model
for evaluating the spread of aggressive network worms. Computer as a Tool, 2005.
EUROCON 2005.The International Conference on 2 (2005) 1710–1713

21. Wang, Y., Wang, C.: Modeling the effects of timing parameters on virus propaga-
tion. In: WORM ’03: Proceedings of the 2003 ACM workshop on Rapid malcode,
New York, NY, USA, ACM (2003) 61–66

22. Kesidis, G., Hamadeh, I., Jiwasurat, S.: Coupled kermack-mckendrick models for
randomly scanning and bandwidth-saturating internet worms. In: Quality of Ser-
vice in Multiservice IP Networks, Third International Workshop, QoS-IP 2005.
Volume 3375 of Lecture Notes in Computer Science., Springer (2005) 101–109

23. Vanmarcke, E.: Random fields, analysis and synthesis. Cambridge, Mass., MIT
Press (1983)

24. Ludwig, D., J.D., Holling, C.: Qualitative analysis of insect outbreak systems: The
spruce budworm and forest. The Journal of Animal Ecology 47 (1978) 315–332

25. Avlonitis, M. Zaiser, M.A.E.C.: Nucleation and non-linear strain localization dur-
ing cyclic plastic deformation. Journal Of The Mechanical Behavior Of Materials
18 (2007) 69–79


