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A Spatial Stochastic Model for Worm Propagation: Scale Effects 

Abstract 
Realistic models for worm propagation in the Internet have become one of the major topics in the 
academic literature concerning network security. In this paper, we propose an evolution equation 
for worm propagation in a very small number of Internet hosts, hereinafter called a subnet and 
introduce a generalization of the classical epidemic model by including a second order spatial term 
which models subnet interactions. The corresponding gradient coefficient is a measure of the 
characteristic scale of interactions and as a result a novel scale approach for understanding the 
evolution of worm population in different scales, is considered. Results concerning random scan 
strategies and local preference scan worms are presented. A comparison of the proposed model 
with simulation results is also presented. Based on our model, more efficient monitoring strategies 
could be deployed. 

1 Introduction 
Computer worms are autonomous programs that self-propagate across computers and networks, by 
exploiting security flaws in widely used services. Early worms such as Code Red (Moore et al, 
2002), Slammer (or Sapphire) (Slammer, 2003), Blaster (Blaster, 2003), Nimda (Nimda, 2001) and 
their variants have caused significant damage in the Internet infrastructure. While early worms 
aimed mostly at denial of service (DOS) attacks and congesting network lines, future worms are 
expected to bear catastrophic payloads such as access to confidential information, data erasure and 
corruption, hardware damage etc (Weaver et al, 2003). Future worms are also expected to employ 
fast spreading strategies, cooperative scanning, and distributed control techniques (Staniford et al, 
2002). Such worms, exploiting a relatively homogenous software base, high-bandwidth 
connectivity and poor security policies, may result in significant congestion within the Internet core 
and may even bring down a large part of the information infrastructure within a short time interval. 

After being deployed, each worm instance applies a scanning strategy in order to propagate. Three 
main scanning strategies are considered in the literature (Staniford et al, 2002), (Zou et al, 2006). 
Random scanning worms (e.g. Code Red I) uniformly scan the entire address space to find 
vulnerable targets. In local preference scanning (e.g. Blaster, Code Red II, Nimda) the worm scans 
preferably the IP addresses that are close to its address (e.g. within the same /8, /16, or /24 
network). In sequential scanning, the infected host sequentially scans from a starting IP address, 
selected by the worm, and then increments the address by one. 

Worm propagation models are mathematical models that attempt to capture the propagation 
dynamics of scanning worms in order to understand better the various worm types and behaviors, as 
well as to design and evaluate strategies for monitoring and early detection of the worm. While it 
seems hard to create realistic models mainly due to the heterogeneity of the Internet networks, 
recent research has come up with analytical models and simulation results that approximate well the 
behavior of real random scanning worms such as the Code Red and Slammer worms, for which real 
measurements are disposable on the Internet. Admittedly, the difficulty in evaluating analytical 
models that describe scanning strategies other than random scanning, such as local preference 
scanning, cannot be evaluated with real world data. In such a case, a simulation model with realistic 
network characteristics has to be designed (Monirul et al, 2005). 

Our contribution. The classical epidemic model is able to describe random scanning strategies 
assuming the Internet as a uniform underlying infrastructure. Recent models have extended the 
classical model to describe random scanning strategies assuming a non-uniform network 



infrastructure (e.g. (Serazzi et al, 2003)). Others (Zou et al, 2006), have modeled a local preference 
strategy, however assuming a uniform underlying infrastructure. As a result, most worm 
propagation models in the literature introduce their evolution equations by considering the 
population of infected hosts in the whole Internet (classical epidemic) or in large scale networks 
(e.g. (Serazzi et al, 2003), (Zou et al, 2006)) in order to describe the behavior of a worm. In this 
paper we extend the classical model by introducing the notion of an elementary network quantity, 
i.e. a very small number of Internet hosts, hereinafter called a subnet, and propose an evolution 
equation for worm propagation into an arbitrary subnet. The formalism can take into account non-
uniformities that are due either to local interactions between neighboring subnets (e.g. as a result of 
a local preference strategy) or to the heterogeneity of the underlying infrastructure, (e.g. bandwidth 
variations, different topologies, human countermeasures etc.). In particular, we present an 
application of the proposed formalism for local preference worms. As a possible application, the 
proposed approach could be used to construct monitoring strategies, where the propagation of the 
worm in the whole Internet may be predicted by examining worm propagation within a 
representative neighborhood of local subnets. 

This paper is organized as follows: In Section 2 we present related work on worm propagation 
models and monitoring strategies. In Section 3 we extend the classical epidemic model by 
introducing a method for studying the behaviour of random scanning and local preference worms. 
In Section 4 we validate the presented model with simulation results. Section 5 concludes the paper. 

2 Related work 
Current worm propagation models follow the line of work that begun from classical 
epidemiological models (e.g. (Kermack, 1927), (Anderson & May, 1991)). The first complete 
application of mathematical models to computer virus propagation was proposed in (Kephart & 
White, 1991). Epidemiological models are given names according to the initial letters of the 
possible states an entity can be at. For example, the Kermack-McKendrick model with the states 
{Susceptible, Infected and Recovered} is referred to as the SIR model, where a node cannot be 
infected more than once. The model in (Kephart & White, 1991) was a SIS model, where a node is 
infected and cured repeatedly. In the simple SI epidemic model (Heathcote, 2000), a host is infected 
by the virus and will stay infected forever. 

Scanning strategies. The RCS model, described in (Staniford et al, 2002) attempted to model 
random scanning worms which peak before a remedy is deployed (i.e. it follows the SI model). The 
authors used empirical data from the Code Red v.2.0 worm and considered the Internet topology as 
an undirected completed graph. Later, in (Zou et al, 2002) the RCS model was extended to include 
host disinfection (the “R” in the SIR model). In the model of (Onwubiko, 2005) for random 
scanning worms, the states of the SIR model are extended to include susceptible nodes that are 
removed from the network or simply quarantined. In (Zou et al, 2006), mathematical models and 
simulations for current and future scanning strategies are presented without considering human 
interaction (i.e. a SI model) or network congestion. In (Zou et al, 2006) it is also said that local 
preference strategy improves worm propagation when the vulnerable hosts are more densely 
distributed within a given network. They also model local preference worms following the SI model 
and present simulation results. 

Non-homogeneous aspects. Besides human intervention, analytical models attempt to reflect how 
worm propagation can be influenced by other factors, such as the underlying network topology 
(Wang et al, 2003), the differences of bandwidth within and between networks, the infection delay 
(Wang & Wang, 2003) or even the congestion caused by the worm itself (Zou et al, 2002). For 



example, in (Serazzi et al, 2003) the RCS model was further extended to describe bandwidth limited 
(UDP scanning) worms such as the Slammer worm. The model takes into account the possible 
variations in the capacity of connections between different autonomous systems. In another 
proposal, the work in (Kesidis et al, 2005) for bandwidth-limited worms models the spread of 
random scanning worms given bandwidth limitations within heterogeneous networks. In (Yu et al, 
2006), modelling worms with varying scan rate was presented.  

Monitoring Strategies. Traditional techniques and strategies for protecting against worm intrusions 
in a proactive and reactive manner are human based (Moore et al, 2003). Admittedly though, early 
detection and response for fast spreading worms cannot involve human reaction as the worm may 
infect the majority of vulnerable nodes before human countermeasures can be taken. As a result, 
much attention has been shed on automated real-time monitoring. Anomaly detection techniques 
(Zou et al, 2003), (Υu et al, 2006) with distributed monitoring within the local network, may trigger 
automated response (e.g. automated alarms, worm signatures, quarantine of nodes, automated patch 
dissemination (Sidiroglou & Keromytis, 2005])etc.). In recent works, local host information is 
exploited for early detection of worms within local networks ((Gu et al, 2004), (Costa et al, 2005), 
(Sidiroglou and Keromytis, 2005)). Staniford et al (Staniford et al, 2002) proposed the 
establishment of a Cyber Decease Center to collect global security-related information for early 
worm detection. Similar proposals for global strategies include the use of distributed network 
telescopes (Moore et al, 2003), or the employment of a network of honeypots (i.e., hosts that 
pretend to own a number of IP addresses) to attract and identify attackers (Serazzi et al, 2003). 
Special filters that capture the dynamics of worm propagation could also be inserted as part of the 
filtering in network routers. For example, the Kalman filter for random scanning worms is based on 
the simple SI epidemic model (Zou et al, 2003). All observation data collected by the distributed 
monitors, are being sent in real time to a central server which, in real time compares the results with 
the figures expected by the propagation model and acts accordingly. 

3 A spatial stochastic propagation model 
In this section we are interested to model the evolution of the worm population in the whole internet 
by focusing in the behavior of local subnets instead of considering large networks or Autonomous 
Systems. This point of view has the advantage that interactions between subnets may be taken into 
account for worm propagation. As a result the Internet can be macroscopically thought of as the 
interconnection of many interacting subnets. In each subnet an epidemic model for worm 
propagation may be considered. 

Following the line of work by Serazzi et al (Serazzi et al, 2003), let iN  be the number of 
susceptible hosts in the i-th subnet and iI  the infected hosts in the same subnet. Suppose that K is 
the average propagation speed of the worm and in a first approximation let us say that it is constant 
in every single subnet. Assuming a random scanning strategy, there is a probability INP  that a host 
inside the subnet targets a host inside the same subnet and a probability OUTP  that instead it attacks 
another subnet. Without lost of generality we assume that all subnets have the same size si NN = . 
Under the assumption that the worm randomly generates the target IP address, the following 

evolution equation for the density of infected hosts 
S

i
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I
a =  ( iI  is the number of infected hosts) in 

an arbitrary subnet holds (taking into account both the internal and external worm infections 
attempts (Serazzi et al, 2003)) 
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Equation 1 

where n is the number of subnets in the Internet which has a total of N susceptible hosts. 
Simplifying further, 
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Equation 2 
In a continuum limit a single subnet may be viewed as a volume element at arbitrary position x. 
Here the space coincides with the space of susceptible IP addresses and the above evolution 
equation may be written as 
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Equation 3 

where integration performed over all subnets sNNn = . 

In the more general case, assuming quite smooth variations of the number of infected hosts in 
neighborhood sites, in a first approximation using a Taylor expansion around x  ( rxy +=  ) we 
may write 

∫ 
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where we have used the abbreviation ),( txaaX = . 

Eq. (4) is our final result. The result is a spatial generalization of the simple epidemic model in 
order to capture non-uniformities between subnets. In this form the proposed model is able to 
describe different patterns of infected hosts, either because of non-uniform scanning strategies (e.g. 
local preference), or because of the inherent heterogenoneity of the Internet networks. As a result, a 
more realistic model of worm propagation can be constructed. 

Case studies 
A) Random scanning worm 

In the simplest case (also followed by most analytical models in the literature), we consider a 
uniform scanning strategy and the Internet as homogeneous. In this case, the number of infected 



hosts uniformly increases within the Internet. As a result a uniform spatial distribution emerges and 
the spatial partial derivatives in Eq. (4) vanishes, 
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or, using that ∫=
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In this scenario our model coincides with the well known epidemic model. As a result the above 
analysis shows that the inherent weakness of the classical epidemic model lies in the assumption of 
homogenous Internet structure. Since uniform infrastructure was assumed, the behavior of an 
arbitrary subnet (theoretically of any size but in practice there is a lower limit below of which the 
phenomenon is discrete in nature) coincides with the behavior of the Internet as a whole. Indeed, 
Eq. (5) may be rewritten as follows,  
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and using that ndr
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=∫  we end up with (recall also that nNN S= ), 
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On the other hand using Eq. (6) (recall that ∫=
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or finally  
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Equation 20 
Comparing Eq. (8) and Eq. (10) we confirm what was intuitively expected (as stated before), that 
when no non-uniformities are present, the propagation of a worm in arbitrary subnet proceeds 
independently and as a result the average behavior of a worm population in the Internet coincides 
with its propagation behavior within any single subnet. 

 

B) Local preference scanning 

In this section we model a local preference scan worm with a uniform probability to scan addresses 
in its own “/m” prefix network. As a result a non-uniform distribution of infected hosts emerges and 
the spatial derivatives in Eq. (4) are no longer negligible. Following Zou et al (Zou et al, 2006) we 
rewrite Eq. (4) as follows, 
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where NK=β  is called the pairwise rate of infection. In (Zou et al, 2006) this is expressed as, 

Ω
=
ηβ  

Equation 12 
where η  is an average scan rate and Ω  is the total number of IP addresses, while for a local 
preference worm they introduce the following β ′  and β ′′  pairwise rates of infection in local and 
remote scan respectively, 
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where Q is the number of “/m” prefix networks in Ω. For the arbitrary subnet at x, the integration in 
Eq. (11) must be split into two domains, first into the same network and a second one over the 
remaining networks. As a result we write (using the corresponding rates β ′  and β ′′ ), 
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Equation 14 

where xQ  is the “/m” prefix network which contains the arbitrary subnet. To proceed further we 
make the following assumption: for quite smooth heterogeneities the second order spatial derivative 
vanishes in the xQ−Ω  domain. Performing the integration and noting that the first spatial 
derivative vanishes because of symmetry we end up with, 











′′−+

∂
∂

′+′−= X
X

XXS
X aQ

x
a

caaN
dt

da
βββ )1()1( 2

2

 

Equation 15 
or 
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Equation 17 
This is the final evolution equation for local preference scanning worms in an arbitrary subnet. The 
contribution of the formalism is a specific law for the local evolution of worm propagation taking 
into account the heterogeneities arising from a local preference strategy. Eq (16) can be analytically 
solved in order to estimate the evolution of the worm population in the whole Internet. The 
formalism introduces as a crucial model parameter, the gradient coefficient c in Eq (17) which 
represents a critical scale of interactions between subnets. This means that in a neighborhood of this 
scale the worm population proceeds independently. As a result, the evolution of the worm 
population within this neighborhood of subnets coincides with the evolution of the population in the 
Internet as a whole. 

4 Simulation Results 
In order to verify the analytical model outcomes, we have built a simple discrete event simulator for 
a setup equivalent to a /16 network. Under this setup, a total number of 256 networks (LANs) has 
been simulated. Each LAN has 256 hosts, all susceptible to worm infection. Initially, a single 
computer node in an arbitrary LAN is in infected state. 

The general characteristics of the simulated worm are: 1 infection probe per time unit (which in our 
scenario roughly corresponds to 1 ms), UDP-like scanning with no connection establishment 
delays, 10 time units for intra-LAN and 100 time units for inter-LAN infection propagation. The 
simulation executions follow the evolution of worm infection in two distinct cases: 

In the first case, the addresses generated for infection scanning have a uniform (random) 
distribution, disregarding any information about locality. Each infection probe can target any other 
host in simulated setup with equal probability. 

In the second case, the worm exhibits a local preference in the probe addresses it generates. Under 
our scenario (and following the characteristics of a Blaster-like worm) 40% of the generated 
addresses target other hosts in the same LAN, while the remaining 60% targets hosts in random 
LANs. 

In both cases, we study the density of infected hosts within the total susceptible hosts, either in the 
whole setup (total infection density), or in each subnet LAN (local infection density). The goal of 
this study is to investigate and validate the proposed model in relation to the predicted scale 



behavior of worm propagation. To this end, the evolution of densities of infected nodes in global 
(over total setup) and local (per subnet LAN) ranges, are examined.  
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Figure 1. Infection in an arbitrary LAN – Random scanning 

Simulation results for the random scanning case are depicted in Figure 1. Analysis of the average 
error in estimating the global infection density, by using values of local densities into subnets of 
256, 128 or 64 hosts, was performed. The results show a negligible average error of the order of 1% 
in accordance with the proposed model until a certain limit of analysis (~50 hosts) is applied. Below 
this limit the phenomenon tends to be discrete.  
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Figure 2. Infection in an arbitrary LAN – Local preference 



The same analysis for local preference probing was performed. Simulation results are depicted in 
Figure 2. The departure of the local evolution of the worm population from the global evolution is 
evident below a critical subnet size. Indeed in the case of a subnet size of 64, 128, 256 there is an 
average error of 40% in the estimation of the global infection density. On the other hand, when a 
critical size of 512 hosts is considered, the corresponding estimation error is of the order of 15%. 
This preliminary result shows in a clear way the significance of accurately estimating the critical 
size of the subnet over which monitoring must be performed in order to predict the global density of 
infection. 

5 Discussion and Future Work 
In this paper we presented an evolution equation for describing a worm’s propagation within a very 
small scale network of hosts, i.e. the subnet. At this scale it is possible to capture more accurately 
non-uniformities that are due either to local interactions between neighboring subnets or to the 
heterogeneity of the underlying infrastructure within a neighborhood of subnets. This was done by 
including a second order spatial term which models the aforementioned subnet interactions. The 
corresponding gradient coefficient is a measure of the characteristic scale of interactions and as a 
result a novel scale approach for understanding the evolution of worm population in different 
scales, was considered. In particular, we presented an application of the proposed formalism for 
random scanning and local preference worms, and presented simulation results.  

A practical implication of the proposed approach could be the construction of more effective 
monitoring strategies. Indeed, global strategies for monitoring worm activity require a large 
monitored network to become effective. In view of fast spreading worms, it seems difficult to setup 
nation-wide or global monitoring infrastructures for early warning (Zou et al, 2003). On the other 
hand, local strategies can be more effective in early detecting and setting up threshold alarms. 
Furthermore, monitoring traffic within local networks could turn out to be more effective against 
fast worms with non-uniform behavior, such as local preference scanning. However, as it was 
shown in Figure 2 this can be misleading because of interactions between subnets. Our analysis 
demonstrates that we may maintain local monitoring strategies, by introducing a neighborhood of 
subnets of appropriate size over which the evolution of worm population follows correctly the 
evolution of the population in the global Internet. In such a monitoring architecture, special filters 
could be run either at the router of each subnet or at distinct hosts among subnets, in order to 
capture the evolution of the worm population. A centrally controlled entity, similar to (Zou et al 
2003), would gather the distributed log data and compare them in real time against the epidemic 
model for counting the alarm threshold.  

In a future work we intend to elaborate on the details of an effective monitoring architecture for 
early detection of fast spreading worms. Furthermore, observe that the generalization of the 
classical epidemic model, proposed in Section 3, considered local preference scanning worms and a 
homogeneous infrastructure. The model could be extended to take into account other non-
uniformities such as bandwidth variations, different topologies, varying scan rates etc. Finally, the 
gradient coefficient c of Section 3, was introduced in a more or less phenomenological way: 
although simulation results confirmed its validity, we have not provided a rigorous estimation of its 
value, derived from local preference scanning features. This should also be addressed in a future 
work. 
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