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ABSTRACT

In this paper, we build on a recent worm propagation stochastic model, in which random effects during worm spreading
were modeled by means of a stochastic differential equation. On the basis of this model, we introduce the notion of the
critical size of a network, which is the least size of a network that needs to be monitored, in order to correctly project
the behavior of a worm in substantially larger networks. We provide a method for the theoretical estimation of the critical
size of a network in respect to a worm with specific characteristics. Our motivation is the requirement in real systems to
balance the needs for accuracy (i.e., monitoring a network of a sufficient size in order to reduce false alarms) and perfor-
mance (i.e., monitoring a small-scale network to reduce complexity). In addition, we run simulation experiments in order to
experimentally validate our arguments. Finally, based on notion of critical-sized networks, we propose a logical framework
for a distributed early warning system against unknown and fast-spreading worms. In the proposed framework, propagation
parameters of an early detected worm are estimated in real time by studying a critical-sized network. In this way, security is
enhanced as estimations generated by a critical-sized network may help large-scale networks to respond faster to new worm
threats. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computer worms are autonomous programs that spread
across a network by exploiting existing security vulnerabil-
ities of interconnected computers. Scanning worms search
for their targets by scanning target port(s) of other nodes in
order to locate software applications with specific vulnerabil-
ities.Worms can self-propagate and pollute a large portion of
a network in a short period because of the relatively homoge-
neous software base and the high bandwidth connectivity in
the Internet [1]. Depending on their strategy, scanning
worms can also be seen as random, local preference, sequen-
tial, or topological scanning worms [2,3].

Whereas, nowadays, classical scanning worms repre-
sent a very small percentage of malware creation;† a new
†Compared to 10 years ago, individual, stand-alone malware (i.e.,
worms and viruses) do not rank as the number one threat in computer
epidemics [54,4]. The main trend in malware propagation involves ar-
bitrary code execution supported by Botnet infrastructures that control
hundreds of thousands of hosts in order to generate high financial prof-
its to their owners [55].
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generation of advanced malware with self-propagating
characteristics will soon constitute a real, severe threat
to computer networks and critical infrastructures. For
example, the recent Stuxnet worm [4,5], which attempted
to seize control of industrial control systems, may be the
first in a long line of highly selective, self-propagating
malware [6,7] that are expected to emerge in the near
future. Such new generation of smart worms may also be
able to traverse nonInternet-connected systems: for exam-
ple, the Stuxnet worm used local preference strategies
and peer-to-peer (P2P) networking techniques to send
instructions to infected machines that were not connected
to the Internet. The threat of a future, advanced scanning
strategy has also been studied in the literature, under the
names of hitlist worms [3], routing worms [8,9] and
importance scanning worms [10], permutation [11,3], or
divide-conquer worms [9]. These are selective worms that
spread faster by carefully selecting their victims instead of
‘blindly’ scanning the universe for possible targets [9,8,3].
Envisaged worms, such as the flash [3] or complete-scan
[9] worms, could theoretically infect the entire vulnerable
population within seconds.
Copyright © 2012 John Wiley & Sons, Ltd.
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Worm (or in general, self-spreading malware) propaga-
tion is in fact a stochastic process, as random effects are
present in real networks. This source of randomness takes
root in the various nonuniform parameters that influence
malware propagation [3,8,10,12–17]. Most of these
parameters can be categorized as malware-related (e.g.,
scanning strategy, scan rate, IP random address selection,
congestion), network-related (e.g., network bandwidth,
traffic, topology), system-related (e.g., vulnerable hosts
distribution, initially infected hosts), policy-related (e.g., net-
work or host-level firewall policies, intrusion prevention,
automatic quarantine), and human-related (e.g., removal
tools, vulnerability patching, disconnecting or isolating
hosts, blocking access to a service, operating system
updating or restoring, training users, user awareness). Novel
characteristics of current and future self-propagating
malware, such as high stealthiness, polymorphism and
context awareness, increase the inherent complexity of
the propagation process. Sometimes, there are interdepen-
dencies among some of the above factors. For example,
the worm’s scan rate may be affected by the available
bandwidth and the traffic created by the worm itself [12]
or even by the delays in Domain Name System (DNS)
replies [17]. Or, the distribution of the vulnerable hosts
may depend on the security policies. Finally, the propaga-
tion of the next generation malware will be influenced by
the specific characteristics of an underlying wireless com-
munication infrastructure (e.g., wireless range, congestion,
mobility of nodes), thus, increasing the overall complexity.

Mathematical models can help the security research
community to understand the threat and study the propaga-
tion pattern during the lifetime of a worm [12,18,19]. For
example, an analytical model can provide numerical
solutions that explain the evolution of the worm’s popula-
tion, provide patterns for accurate prediction and damage
assessment for future worm threats, and test new models
for containment and disinfection of worms [3,18]. Recent
research also suggests that, by analyzing a worm’s behav-
ior, we may have insights into effectively detecting and
containing a fast-spreading worm [18,20]. For example,
during the spread of a worm, a propagation model can
be used to individuate and describe symptoms of worm
activity, thus, providing useful data to an early detection
system [20]. The extracted knowledge could also be used
to trigger emergency response, for example, an automatic
containment policy. A challenge for the propagation models
is to take into account most of the above parameters, which
affect the propagation rate of a worm.

Another challenge for computer epidemiology and secu-
rity research is whether the monitoring of worm propagation
within a small-scale network can accurately project its
growth rate in networks of a larger scale (i.e., the Internet).
We will call this process worm projection. The generaliza-
tion of the results obtained by monitoring a small fraction
of the Internet is subject to controversy [14,21]. On
one hand, worm projection in small scales is difficult
because of the heterogeneities of the various small-sized
networks that comprise the Internet, as well as because of
Security Comm. Networks 2013; 6:78–88 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
the non-uniformities of the worm’s scanning strategies. As
a result, under a pragmatic theoresis, worm projection cannot
be successful within a single (uniform) or small-scale
network, whereas a sufficiently large scale will diffuse the
network heterogeneities and better describe the phenome-
non. On the other hand, the cost and complexity of monitor-
ing a very large network is high (e.g., the processing cost of
realtime traffic analysers or for deep scanning of a large
number of monitored network packets is not negligible—
see, for example, the analysis in [22]). In [9], the perfor-
mance of a detection system is related to the minimum size
of a detection network needed to ensure that a worm is
detected within a certain time. Intuitively, a small network
size reduces the time for early detection but increases
false alarms.

1.1. Our contribution

We build on a recent model [23] which describes the
propagation of fast-spreading, random-scanning worms in
the Internet, where random effects in worm-spreading
velocity were modeled by means of a stochastic differential
equation. In this paper, we validate the robustness of the
model proposed in [23] and introduce the notion of the
critical size of a network, which is the minimum size of a
network that is sufficient to monitor, in order to accurately
project the growth of such worms in larger networks.
Furthermore, we provide a theoretical estimation of the
critical size of a network, which is intrinsically linked to
the characteristics of a specific worm. We run simulation
experiments that validate our arguments. Then, we exploit
this knowledge to design a framework for a distributed
early warning system against fast-spreading malware. In
our view, this means finding a network of critical size,
over which monitoring worm propagation will accurately
project the spread of the worm in larger networks. Our
envisaged system involves a coalition of network domains
of variable size and characteristics that cooperatively esti-
mate the critical network size. We argue that networks of
this scale can correctly estimate and disseminate, in a
timely manner, the infection parameters for an early
detected worm. In this way, security is enhanced as estima-
tions of worm propagation generated by a critical-sized
network may help larger networks respond faster to new
worm threats.
2. RELATED WORK

Epidemiologic models for analyzing the spread of computer
malware are not new [24]. Early attempts [12,3] that capture
the strategy of random-scanning worms use the simple
epidemic model [13] to study the initial part of worm spread-
ing, where factors such as human countermeasures and
congestions do not affect the worm propagation. In recent
years, a number of deterministic models were designed to
consider the parameters that affect the scanning worm
propagation for random scanning (e.g., [12,3,18,25,16]),
79
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local preference (e.g., [14,19,15]), or other advanced
scanning strategies (e.g., [9,8,19,17,10]). For example, the
two-factor model in [12] takes into account the congestion
caused by the worm scan packets, as well as the reactive
(human) countermeasures that turn infected or susceptible
nodes into a recovered state. Models that consider the
preventive measures (e.g., antivirus and patch management
[26]), the link bandwidth between systems [18,25,16], the
network topology [27], the slow down caused by automatic
treatment and containment measures [28,1,14,29,30], and
the infection delay and user vigilance [31] have also been
proposed in the literature.

Because of the observed randomness affecting worm
propagation in the Internet (e.g., [13,1]), the so called
stochastic models have also been emerged (e.g., [32,33]).
These models, contrary to deterministic models that express
a mean-field behavior, are based on the observation that
worm propagation is an inherently random process. In the
models of [32,33], randomness emerges because of the
scanning strategy, whereas other sources of randomness,
for example bandwidth limitation or network topology, are
not covered. The above approaches propose discrete Markov
models in order to predict propagation at early stages, intro-
ducing, as an appropriate variable, the amount of time for the
next infection, as well as estimating its mean value and
variance in order to construct robust detection protocols.

The problem of Internet modeling and analysis has been
studied in various contexts [34] and is particularly challeng-
ing in monitoring and detecting worm propagation [14,16].
Normally, a detection architecture requires a large number
of monitored networks to distinguish scanning worms from
other activities. Staniford et al. [3] proposed the idea of a
‘Center for Disease Control’ that collects worm-related
information from a very large number of monitors. The
Honeynet Project [35], CAIDA [36], and the Internet Storm
Center (DShield) [37] also use the same approach. CAIDA
used one /8 network and two /16 networks to monitor the
spread of the Code Red v2 worm [38]. Moore’s network
telescopes [39] monitor a relatively large fraction of the IP
space to project the spread of a worm over the global Inter-
net. In the literature, there have also been attempts to use
smaller scale architecture to monitor and early detect the
propagation of a worm (e.g., [9,20,14,16]). In [20], for
example, a set of distributed monitors offer observation data
on a worm’s activities to a malware-warning center for early
detection. In [14], a /8 network size is seen as sufficient to
characterize and monitor the spread of scanning worms. In
the distributed framework of [40], software agents are placed
in ‘many’ local machines; they monitor for suspected execu-
tables and send CRC reports to a central server which
decides whether executables behave as worms [40]. Most
of the previous approaches require monitoring a large
network. Furthermore, they are static, in the sense that the
size of the network that will be monitored is predetermined.

Especially for fast-spreading worms, a challenge for
security research is the high number of false alarms in
anomaly-based intrusion detection systems [1,20,41]. The
problem becomes worse given the threat of stealth worms
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and polymorphism where worms change behavior to evade
detection and containment [42]. Furthermore, during the
outbreak of a fast scanning worm, the difficulty of in-time
human countermeasures has been pointed out in the litera-
ture [1,3]. In several circumstances, automatic containment
measures [43,28], when paired with early detection, can
slow down the worm infection [1,44]. Moore et al. [1]
studied the challenges and effectiveness of automated
containment for fast-spreading worms and presented a
deployment scenario for distributed containment. In the
system of [28], suspiciously behaving hosts are quarantined
for a fixed time interval. In [30], early detection is incorpo-
rated with automatic containment that is based on local
victim information. In [45], a host-based automatic contain-
ment system, destined for random or preferential worms, is
based on the strategy of limiting the number of scans to
unique IP addresses.
3. A STOCHASTIC MODEL FOR
WORM PROPAGATION

3.1. The stochastic differential model of
Avlonitis et al. [23]

Let us assume a random-scanning worm that propagates
over a network with N unique hosts (N interpreting the
entire IP space scanned by the worm), where Ns≤N of
these addresses could potentially become infected by the
worm. In an arbitrary ensemble of hosts (i.e., a subnet)
and for the simplest case (e.g., recovery and/or removal of
hosts are not taken into account), the population Ns is split
into infected and susceptible subpopulations, represented
by I(t) and S(t), respectively. The classical epidemic model
can be expressed with the following ordinary differential
equation.

dI tð Þ
dt

¼ b
N
S tð ÞI tð Þ (1)

or

dI tð Þ
dt

¼ f I tð Þð Þ (2)

where b is the constant scan rate and f I tð Þð Þ¼ b
N Ns�I tð Þð ÞI tð Þ

is the spreading ‘force’ over the scale of the entire network
(i.e., the Internet).

A stochastic differential model for random-scanning
worms was proposed in [23]. In [23], the scale over which
the worm propagates was seen as a crucial factor, and
it was argued that models that refer to different scales
predefine the nature of the variables and parameters of
the problem of worm propagation. Specifically, if a model
tries to describe the behavior of the worm propagation in
microscale (i.e., very few number of hosts), then a probabi-
listic model is the only choice, and S(t), I(t) are interpreted
ecurity Comm. Networks 2013; 6:78–88 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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as random variables (e.g., [32,33]). On the other hand, if a
model is referred to the macroscopic behavior of a worm in
the Internet (i.e., the macroscale), deterministic models are
more appropriate, and S(t), I(t) are interpreted as determin-
istic variables, (e.g., [24,12,3]). The link between these
models is an approach that is able to describe worm
propagation in the mesoscale, which is an appropriate scale
for real-world monitoring systems.

Following the line of reasoning of Avlonitis et al. [23], in
mesoscale, the population variables S(t), I(t) are interpreted
as stochastic variables. Moreover, the infection parameter b
is also assumed stochastic: here, b models the total infection
rate, incorporating randomness that is due to either choices/
decisions made by the worm itself (e.g., scanning strategy,
scan rate, random IP address selection) or changes in the
network environment within which the worm evolves (e.g.,
bandwidth, congestion etc). b is fluctuating around a mean
value < b>, where the corresponding noise is assumed to
be the well-known limit of the white noise, that is,

b ¼< b > þdb (3)

where

db ¼ _w; < db >¼ 0 (4)

and

< dbi�dbj >¼ s2dij (5)

where s2 is the amplitude of the white noise _w.
Substituting the infection parameter b in the corresponding

evolution equation (Equation (1)), a random fluctuating part
df of the spreading ‘force’ is obtained,

dI

dt
¼ f<b> Ið Þ þ df (6)

where

f<b> Ið Þ ¼ < b >

N
Ns � Ið Þ�I (7)

and

df ¼ 1
N

Ns � Ið Þ�I� _w (8)

Equation (6) is the evolution equation describing the dynam-
ics of worm propagation. It belongs to a general class of
stochastic differential equations, being able to describe, with
success, the evolution of dynamical systems in the mesoscale
(e.g., [46–48]).

In this form, the stochastic differential model provides
a quantitative estimate for the inherent randomness.
Indeed, according to Equation (6), a measure of the result-
ing noise is
Security Comm. Networks 2013; 6:78–88 © 2012 John Wiley & Sons, Ltd.
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Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< df 2 >

p
(9)

or [23]

Q Ið Þ ¼ s
N

Ns� < I >ð Þ� < I > (10)

It is important to note that Equation (10) quantifies the in-
herent randomness of worm propagation emerged in real
networks in terms of the variables and parameters of the
problem.

3.2. ValidationofAvlonitisetal. [23]—bridging
the scales

It is emphasized that the stochastic equation proposed in
Equation (6) is referred to a scale the size of which defines
the mesoscale for the problem of worm propagation.Wewill
validate the robustness of the proposed model by showing
that it reproduces the classical epidemic model when averag-
ing over the Internet is performed (up-scaling). Indeed, in
order to find the propagation rate dI/dt in the macroscale,
the stochastic differential equation (Equation (6)), must be
averaged over the Internet, that is,

< dI=dt >¼<
< b >

N
Ns � Ið ÞI þ Q Ið Þ _w > (11)

or

< dI=dt >¼ < b >

N
< Ns � Ið ÞI > (12)

where, making use of Equations (4) and (5) and neglecting
higher orders, the average value of the last term vanishes.
The following evolution equation for the macroscale holds

d < I > =dt ¼ < b >

N
Ns� < I >ð Þ < I > (13)

As a result, when up-scaling is performed, the proposed
stochastic differential equation coincides with the classical
epidemic model, where the stochastic variable of the infected
hosts in the mesoscale is replaced by the average number of
infected hosts, for example, a deterministic variable in the
macroscale. This result confirms the robustness of the model
proposed in [23]. It also confirms the proposition that the
nature of the variable of the infected population is deter-
mined from the scale over which the model is applied. We
believe that the proposed formalism provides the missing
link between the stochastic and deterministic propagation
models found in literature, bridging together the different
scales of observation.

At this point, the limitations of the adopted models
emerge (as generally in nature or in artificial systems):
when trying to describe systems in small scales, taking into
account the inherent randomness, the exact values of the
constitutive variables are replaced by the corresponding
81
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probabilities, whereas the description of systems in the
macroscale gives exact results only for the average values
of these variables.
{Within the limited complexity of our simulation setup, a larger band-
width, that is 1~Gbps, was also simulated, showing a very small in-
crease in the total infection rate.
4. ANALYTICAL ESTIMATION OF A
CHARACTERISTIC SCALE

It turns out that the network scale, over which models are
applied, is the key point for studying and predicting the
worm behavior. Specifically, if robust monitoring is the
goal, we need to be able to estimate the critical network
size, which we define as the smallest size over which
determinism not only wins but excels compared to random-
ness. In other words, monitoring worm propagation in a
network of this size will accurately project the spread of
the worm in larger networks.

To this end, by using the proposed model in Equation (6),
a characteristic network size (i.e., a size over which deter-
minism wins over randomness) is obtained by comparing
the stochastic termwith the first term in the second hand, that
is, the classical epidemic term. The estimation is performed
for the early stage of worm propagation where the saturation
term in Equation (6) vanishes, for example,

da

dt
¼< b > aþ da; (14)

with a= I/N being the density of infected hosts and da the
corresponding fluctuation. Moreover, we assume a unit
variation of the infected hosts. Then, the variation of the
epidemic term is of the order < b>. This may be balanced
against the fluctuating stochastic term, whose average over

a characteristic scale L is of magnitude, <da2>
L

� �1=2
. Equating

the two terms, we obtain the following relation for the
characteristic size, in units of the size of the network over
which averaging is performed,

Lchar ¼ < da2 >
< b>2

: (15)

Equation (15) is of crucial importance. To the best of our
knowledge, it is the only exact relation estimating the charac-
teristic network size. In Section 5.1, the above equation will
be used to estimate the critical network size over which
determinism not only wins but excels over randomness; that
is, the classical epidemic models are accurate in predicting
worm propagation.

For network monitoring and intrusion detection, these
theoretical results can be very useful. Indeed, by monitoring
a network of critical size, the growth of an unknown, fast-
spreading worm may be correctly projected in a timely
manner, meaning that a robust estimation of the infection rate
and the expected damage associated with the worm could be
given. In Section 6, we will discuss how this knowledge
could be used to trigger mechanisms for early warning and
emergency response against a fast-spreading worm.
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5. SIMULATION AND VALIDATION

Next to the development of the theoretical model, we study
the characteristics of worm infection spread via detailed
discrete event simulation. In this section, we describe our
simulator’s setup and results.

The discrete event simulator code is written specifically
for this simulation setup in the C language. The program uses
the standard GNU C/C++ libraries and can be executed in
any x86 architecture machine. An interconnected wired
network with stable physical characteristics and error behav-
ior is being modeled. All timing delays are being examined
on top of this network; as such, these delays take into consid-
eration possible transmission errors in underlying layers.

The code of the simulator models a fast User Datagram
Protocol (UDP) scanning worm with a minimal payload
packet. The employment of UDP enables an aggressive
behavior of the worm without Transmission Control
Protocol (TCP) handshaking delays. In this way, the
scanning rate of an infected host is effectively limited only
by the available bandwidth of its interconnecting network
interface. In our setup, the average scanning rate is set to
1~probe per ms, which is also our base simulation timing
unit. Following the theoretical model, the simulated worm
is assumed to exhibit a uniform scanning strategy by
targeting every node in the setup with equal probability.
Our main goal is to study the early stage of rapid infection
spread; consequently, each simulated computer node is
modeled to be in one of two states, either susceptible or
infected. That is, no recovery or immunization actions are
taken during simulation execution.

During simulation time, we study an Internet portion
of 256C-class networks. Each network is treated as an
independent LAN with a network backbone interconnect-
ing all 256 LANs. Each LAN, internally, is assumed to
have a total bandwidth of 100~Mbps{, with the same band-
width available on egress nodes of every LAN toward the
interconnecting backbone. Although arbitrary traffic is
expected within and between LANs, the UDP worm-
generated traffic is studied as the dominant factor of
bandwidth limitation within each LAN. We assume 1%
bandwidth overhead for each infected node in a LAN.

5.1. Estimation of the critical size

In order to validate the analytical results about the charac-
teristic network size predicted by Equation (15), we apply
the following procedure. For different subnet sizes of 150,
300, 450, 1200, and 2400 hosts, over which monitoring is
performed for a given early time of worm propagation, the
quantities < b> and < da2> are estimated using the
simulations outcomes (here, we use a sample of at least
20 subnets of each size). It is noted that, in order to
ecurity Comm. Networks 2013; 6:78–88 © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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Figure 3. Fluctuation of infection rate versus network scale.
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estimate < b>, we fit simulation’s monitoring data of in-
fection propagation in time by means of an exponential
function, because, at early times, the solution of Equation
(14) follows an exponential law. Then, < b> coincides
with the exhibitor coefficient. Further, the estimation of
< da2> is straightforward. The results are depicted in
Figure 1.

With substitution in Equation (15), it turns out that a
characteristic network size of about 16 hosts is obtained.
This means that, below this size, randomness always wins
determinism, and the evolution of infected hosts proceeds
in discrete jumps. Indeed, this is verified in Figure 2. On
the other hand, above that scale, the effect of the determin-
istic term begins to become the dominant part for the
evolution of infected hosts. It is our purpose to define the
critical network size over which determinism not only wins
but excels over randomness, and as a result, the evolution
of infected hosts at this scale will coincide with the evolu-
tion on the Internet. To this end, in Figure 3, the variation
of < da2>, with the subnet size over which monitoring is
performed, is depicted. It can be seen that there is a power
law dependency of < da2> on the subnet size. Fitting the
simulation’s data, the following power law relation is
estimated;

< da2 > Lð Þ ¼ 0:02
L1:1

: (16)

Without loss of generality, we assume that determinism
Figure 1. Mean infection rate and fluctuation amplitude.

Figure 2. Infected hosts in microscale (size = 16 hosts).

Security Comm. Networks 2013; 6:78–88 © 2012 John Wiley & Sons, Ltd.
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excels over randomness when the ratio of Equation (15) is
about 0.01. With the combination of Equations (15) and
(16), it turns out that,

Lcrit ¼ 0:02
0:01 < b>2

� �0:9

(17)

or Lcrit = 1427 hosts. The analytical estimated value of the
critical network size is verified from the plot of infected
hosts evolution in Figure 4. Indeed, for network sizes equal
or greater than the critical size, the propagation of the
infected hosts coincides with the evolution over the
total population, whereas for networks of smaller sizes, a
discrepancy is observed. As a result, the critical network
size is correctly estimated from Equation (17).
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6. A FRAMEWORK FOR A
DISTRIBUTED EARLY WARNING
SYSTEM

The basic theoretical result of this paper is that by studying
worm propagation within a network of proper scale that is,
a critical size CS of subnetworks, it is possible to
83
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accurately project the behavior of a worm in larger
networks. Worm projection basically involves collecting
data and then estimating the infection rate and expected
damage caused by the worm. Early projection results,
paired with a well-established early warning policy, may
lead to robust response strategies against fast-spreading,
unknown worms.

One issue that needs to be addressed is that, when a new
worm starts to propagate, we cannot know, a priori, whether
the size of any given network is close to the critical size CS.
In fact, worm projection introduces a trade-off between
robustness and timely response. Specifically, for any given
network of size |N|, there are three possibilities.

(1) Its size is far smaller than the critical size, |N|<<CS,
which means that its projection is probably not
accurate.

(2) Its size is far greater than the critical size, |N|>>CS,
which means that its projection would be accurate,
but it would also induce a time delay that is analogous
to |N|. For very large scales, such a delay could be
detrimental in the case of a fast-spreading worm
where the time to respond is of paramount importance.

(3) Its size is close to the critical size, |N|’CS, which,
as shown in Section 5.1, will lead to an accurate
estimation of the infection parameters within an
optimally short time.

To this end, we envisage a distributed early warning
system that, on the basis of the stochastic model of [23],
will be able to estimate and disseminate, in a timely
manner, the propagation parameters of a specific worm.

6.1. Assumptions and system model

We assume a hierarchical and distributed early warning
system that is capable of incorporating various networks
with minimum configuration effort. A high level descrip-
tion of the system is depicted in Figure 5. In our system
model, there are k network domains, where each domain
monitors n subnetworks. We assume that member domains
are variably sized, that all different sizes sufficiently repre-
sent most regions of network scales, and that they have
GMC

LMC1 LMC2
LMCk

SN11 SN12 SN1n SNk1 SNk2 SNkn

A1

GMC: Global Monitoring Center
LMC: Local Monitoring Center
SN:    Subnetwork
A:      Local Agent

A2
Ak

Figure 5. System model.
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varying internal characteristics, (e.g., topology, bandwidth,
traffic, installed operating systems, and applications). We
also assume the existence of an early detection component
(EDC) within each member domain. The EDC is able to
detect the presence of a fast-spreading worm and is able
to define the worm propagation model parameters. We will
treat the EDC as a blackbox and assume that its functional-
ity is administered within each network domain.

Each domain is locally monitored by one local monitor-
ing center (LMC). A local agent A runs in each LMC and is
programmed to act as a communication interface between
the LMC and the root of the hierarchy, namely a global
monitoring center (GMC). The operation of the local agent
is practically the basic requirement in order to participate
in the warning system. Finally, the GMC receives infection
information from the LMCs and sends back warning
information for an emergency response.

6.1.1. The local agent.
The local agent Ai runs on the LMCi and can be

programmed locally, by the domain administrator, in order
to enforce a particular worm detection strategy. This is
achieved by enabling the agent to configure and manage
the local EDC component in order to collect infection data
from all the subnetworks it monitors. Specifically, the
agent collects data from the local EDC, and when enough
data are available, it runs the propagation model in order
to estimate the infection parameters, that is, an estimation
of the fluctuation da2i and of the worm infection rate bi.

6.1.2. The role of the LMC.
The LMC receives, through the local agent it controls,

information (when this is available) concerning the infec-
tion parameters as well as the size of each subnetwork it
monitors. Then, the LMC uses a secure communication
channel in order to send the infection information to the
GMC. This information includes the size |LMCi| of the
domain and estimations for the worm infection rate bi
and the fluctuation da2i . Thus,

LMCi ! GMC : LMCij j;bi; da2i
� �

(18)

As an extension, in addition to the worm propagation
estimations, each LMC could also send to the GMC (a selec-
tion of) mitigation policies and techniques that the domain is
enforcing in response to the threat of the specific worm.

6.1.3. The role of the GMC.
When a worm starts to propagate, the GMC receives,

from the LMCs, information including the size of the
domains and estimations of the infection parameters. In time,
the GMC will be able to reproduce the power law of Equa-
tion (16) and to estimate the critical size CS from Equation
(17). As soon as a robust estimation of the critical size CS
is available, the GMC will directly disseminate the correct
infection parameters, that is, the parameters that were
estimated by any LMC whose size is the closest to the CS.
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Figure 6. Critical size: convergence of the estimations.
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It is noted that although LMCs with small sizes will
start sending their data at earlier times, the reproduction
of the power law of Equation (16) and, as a result, the
initial estimations of CS via Equation (17) will gradually
converge to the correct CS for the specific worm, as more
data from LMCs with larger sizes will arrive. In any case,
convergence takes place within the same order of magni-
tude for the corresponding correct CS value. Indeed, this
is depicted in Figure 6 where we reproduced the power
law for the two cases: (i) where all five sizes of the LMCs
(i.e., 150, 300, 450, 1200, and 2400 hosts) were used, as in
Figure 3 (with the solid line); and (ii) where only the first
three, small-sized LMCs were included (with the dashed
line). It is evident that the convergence to the correct CS
values proceeds with a very small error.

As an extension, the GMC could also disseminate mitiga-
tion information back to the LMCs. In this way, early
mitigation controls could be implemented by the LMCs.
For example, according to the assessment of the collected
mitigation policies, the LMCs may properly adapt their
network or host-level firewall policies, intrusion prevention
systems, automatic quarantine policies, or even manually
disconnect or isolate particular types of hosts or services.

6.2. Deployment and implementation issues

Our approach does not compete but is meant to complement
current systems for early detection and automatic contain-
ment. For example, the proposed framework could be inte-
grated with any system that is based on worm propagation
models for early detection (e.g., [20]) or with systems that
describe mechanisms for automatic containment (e.g., [28]).

As early detection has a cost [20,22], especially in
large-sized networks, in real systems, it is desirable that
the EDC is initiated when there is a nonnegligible evidence
that a worm is ‘at the gates’. To this end, we suggest the
deployment of an anomaly-based detection system that
will collect preliminary data from default locations, pre-
Security Comm. Networks 2013; 6:78–88 © 2012 John Wiley & Sons, Ltd.
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analyze the network traffic, and make a decision on
whether the examined traffic overcomes a threshold and
hides a potential scanning worm’s behavior, for example,
the number of scans to unused IP addresses or to a specific
TCP/UDP port by ingress or egress traffic. As in [20], a
recursive filtering algorithm (e.g., a Kalman filter) could
be activated at the EDC in order to correctly estimate the
necessary model parameters (the average worm scan
rate and the number of infected hosts). We scope away
deployment and implementation issues for such a system.

Typically, the local agent will run as an extra logic into
the subnet routers or at the edge of the domains as a
firewall logic. We also refer the reader to deployment
scenarios studied in [1].

Finally, any suitable early warning system should fulfill
the following requirements:

1. Scalability. The warning system should be scalable
in order to monitor a large number of networks of
variable size.

2. Extensibility and flexibility. The insertion or deletion
of a network should not affect other participating
networks.

3. Technology independence. The participation of
networks should not depend on specific network
technologies or systems. Worm detection and mitiga-
tion/containment technologies should be extensible
to adapt in different underlying technologies such
as networking and OS technologies.

4. Computationally efficient. The system should be able
to efficiently estimate, in a relatively short time, the
worm propagation parameters.

5. Mitigation capabilities. The system should be able to
collect information from various networks regarding
the mitigation policies and techniques used, as well
as their effect on the worm mitigation.

6. Warning and mitigation efficiency. The system
should be able to disseminate worm mitigation
policies and techniques almost automatically in all
the involved entities.
7. CONCLUSIONS AND FUTURE
WORK

In this paper, we build upon the stochastic approach of [23],
which is used in order to study random-scanning worms in
the Internet. The stochastic model of [23] was validated
and extended by giving a theoretical estimation of the critical
size of a network that needs to be monitored in order to
project the behavior of a worm in larger networks. On the
basis of the notion of critical-sized networks, which was also
validated by experimental simulations, we described a
framework for a distributed early warning system, where a
coalition of network domains of variable size and character-
istics cooperatively estimate and disseminate the infection
parameters for an early detected worm instance. We expect
that estimations generated by a network of critical size will
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help larger networks to respond in a more timely manner to
new worm threats. In this way, the resilience of networks
against fast-spreading malware can be improved. In a future
study, we intend to elaborate on the design and implementa-
tion of a distributed intrusion prevention system against
fast-spreading Internet worms.

Future malware is also expected to take advantage of the
ubiquity of wireless networking technologies (e.g., bluetooth
and WiFi), which smartphones and other portable computa-
tional devices are equipped with [49,50]. Given that
such devices may not always be Internet-connected, fast-
spreading malware will also need to exhibit local preference
behavior and employ P2P networking techniques for self-
propagation within wireless broadcast range. For example,
the notion of a mobile malnet (i.e., a botnet created from
computational 802.11 devices) [51,52] has already been pro-
posed in the context of involuntary location tracking [52].
Malware attacks directed at smartphones will also exploit
the relatively homogeneous software base of current smart-
phones. Furthermore, given the pervasiveness of geolocation
technologies in modern smartphones, future malware
propagation strategies may also be based on context
awareness [53]. Our future work direction will be moti-
vated by the need to treat random and scale effects in
the problem of self-propagating malware in wireless net-
working environments.
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