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Abstract. Data mining technology raises concerns about the handling
and use of sensitive information, especially in highly distributed environ-
ments where the participants in the system may by mutually mistrustful.
In this paper we argue in favor of using some well-known cryptographic
primitives, borrowed from the literature on large-scale Internet elections,
in order to preserve accuracy in privacy-preserving data mining (PPDM)
systems. Our approach is based on the classical homomorphic model for
online elections, and more particularly on some extensions of the model
for supporting multi-candidate elections. We also describe some weak-
nesses and present an attack on a recent scheme [1] which was the first
to use a variation of the homomorphic model in the PPDM setting. In
addition, we show how PPDM can be used as a building block to obtain
a Random Forests classification algorithm over a set of homogeneous
databases with horizontally partitioned data.
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1 Introduction

Data mining aims at extracting valuable, non obvious information from large
quantities of data [2]. This technology has broad applications in areas related to
market research, as well as to financial and scientific research. Despite the poten-
tials for offering valuable services, there have been concerns about the handling
and use of sensitive information by data mining systems. The problem is even
more intense nowadays with the proliferation of the Web and ICT technologies,
and the progress in network, storage and processor capacity, where an enormous
pool of private digital data can be easily gathered, or inferred from massive col-
lections of public data such as Facebook.com, by using well-known data mining
techniques. Even when access to sensitive data is controlled, public data can
sometimes be used as a path towards private data [3].
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Privacy concerns may also prevent building accurate data mining models.
Traditionally, data mining algorithms have been applied in centralized collec-
tions of data. With distributed databases, data may be horizontally or vertically
partitioned among a set of mutually mistrustful sites, where each site may hold
similar data about different people or different data about the same set of peo-
ple, respectively. This is also known as the Server to Server (S2S) model [4]. In a
fully distributed setting, also known as the Client to Server (C2S) model [4], cus-
tomers may be on hold of their own collections of sensitive data. Such data may
need to be correlated with other clients’ data, for example in order to provide
some useful service. The traditional data warehousing approach, where dispersed
data are gathered into a central site for building the data mining model, raises
privacy concerns as organizations and people are reluctant to reveal their private
data for legal, commercial or personal reasons. The simple approach of perform-
ing data mining at each site independently and then combine the results (e.g.,
[5]) cannot always be possible (e.g., in the C2S setting) or accurate enough [6].

The need for privacy in statistical databases is driven by law, compliance,
ethics, as well as for practical reasons: it would enable collaboration between
data holders (e.g., customers, organizations), if they were assured that their
sensitive information would be protected. To this end, Privacy Preserving Data
Mining (PPDM) has been evolved as a new branch of research in the data mining
community [7]. Especially in distributed statistical databases, where there is a
need to extract statistical information (e.g., sum, average, entropy, Information
Gain, etc) without compromising the privacy of the individuals [8].

A very common approach in the PPDM literature has been data perturba-
tion, where original data are perturbed and the data mining model is built on
the randomized data. For example, the data perturbation approach has been
used for classification [9] and building association rules [10, 11]. Typically, such
approach involves a trade-off between two conflicting requirements: the privacy
of the individual data and the accuracy of the extracted results [8, 12]. In ad-
dition, there are cases where the disclosure of some randomized data about a
client may reveal a certain property of the client’s private information, an at-
tack known as privacy breach [10, 12]. Alternatively, and orthogonally to our
research, the privacy preserving issue can also be regarded as an access control
problem concerning aggregate data in more or less controlled environments. In
this regard, multilevel and multilateral security in database information systems
(e.g., [13]), trusted platforms, query restriction policies and inference control [8,
14, 15] as well as anonymization techniques [16] have also been proposed in the
literature.

Traditionally, the use of cryptographic primitives has also been well studied
by the database security community [17]. In the academic literature for PPDM,
following the line of work that begun with Yao [18], most theoretical results
are based on the Secure Multiparty Computation (SMC) approach (e.g. [19, 6,
20]). SMC protocols are interactive protocols, run in a distributed network by
a set of entities with private inputs, who wish to compute a function of their
inputs in a privacy preserving manner. The goal is that no more information is
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revealed to an entity in the computation than can be inferred from that partic-
ipant’s input and output [21]. SMC has been used for mining association rules
on both horizontally [20] and vertically partitioned databases [6]. Classification
models that use the SMC approach involve decision trees [19, 22] and a naive
Bayes Classifier for horizontally partitioned data [23], as well as decision trees
for vertically partitioned data [24]. A disadvantage of this approach is that SMC
protocols require multiple communication rounds among the participants, and
privacy usually comes at a high performance and communication cost [22]. Most
protocols in the SMC family are efficient as long as the number of participants
is kept small (e.g., two or three parties).

Our Contribution. In this paper we explore whether it is possible to use ef-
ficient cryptography in order to perform privacy preserving data mining, e.g.,
in statistical databases, while maintaining the accuracy of the results. To this
end we argue in favor of borrowing knowledge from a broad literature dealing
with cryptographic elections via the Internet. We discuss some weaknesses and
describe an attack on a recent PPDM scheme of Yang, Zhong and Wright [1]
which, to our best knowledge, was the first work that used a variation of the
classical homomorphic model [25] for online elections. Our PPDM approach will
be based on the classical homomorphic model of Cramer, Gennaro and Schoen-
makers [25] for online elections, and more particularly on some recent extensions
proposed in [26, 27] for multi-candidate elections. We show how this approach
could be used to mine frequencies on a large set of customer databases. As an
example, we also propose the use of PPDM as a building block to obtain a Ran-
dom Forests classifier learning algorithm over a set of homogeneous databases
with horizontally partitioned data.

2 PPDM based on the homomorphic (election) model

We argue that research for privacy preserving data mining could borrow knowl-
edge from the vast body of literature on Internet voting systems [28]. These
systems are not strictly related to data mining but they exemplify some of the
difficulties of the multiparty case. Such systems also tend to balance well the
efficiency and security criteria, in order to be implementable in medium to large
scale environments. Furthermore, these systems fall within our distributed com-
puting scenario and have similar architecture and security requirements. In an
Internet election for example, an election authority receives several encrypted
yes/no votes (e.g., yes = 1 and no = 0) and declares the winning candidate. In
this setting the goal is to protect the privacy of the voters (i.e., unlinkability
between the identity and the vote that has been cast), while also establishing
eligibility of the voters, accuracy and verifiability for the election result.

The most efficient schemes in the literature for cryptographically secure on-
line elections follow the homomorphic model [25]. This model is a general frame-
work that allows usage of any randomized encryption scheme with several “nice”
algebraic properties, in order to protect the privacy of the encrypted votes and
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establish accuracy of the decrypted results in a universally verifiable way. With
homomorphic encryption there is an operation ⊕ defined on the message space
and an operation ⊗ defined on the cipher space, such that the “product” of the
encryptions of any two private inputs is the encryption of the “sum” of the in-
puts: E(M1)⊗E(M2) = E(M1⊕M2). This property allows, for example, either
to tally votes as aggregates or to combine shares of votes (e.g., [29, 30]), without
decrypting single votes.

In [25] each client signs and then submits an encryption of her vote to a bul-
letin board [31], together with a zero-knowledge proof [32] that the vote is valid.
The homomorphic model does not require interactions between clients, and only
one flow of data is sent to the server. Privacy is established in a strong cryp-
tographic sense: original inputs are encrypted using the randomized encryption
scheme to preclude chosen-plaintext [33] attacks on the published encryptions; in
addition, no encrypted input is ever decrypted, but instead it is combined with
the other inputs to get the encrypted aggregate. The homomorphic property of
the encryption scheme allows every participant to verify that the final results are
accurate, by performing a multiplication of the encrypted inputs and comparing
the encrypted aggregate to the value published on the bulletin board. Robustness
in such protocols is established by using threshold cryptography [34], where the
power of the election authority is divided among a set of n independent servers,
in a way that a set of t ≤ n honest servers are able to cooperate and compute
the decrypted outcome. As a result, the privacy of clients is assured against any
coalition of less than t servers.

Compared with the election setting, the threat model in PPDM seems to
be relaxed. Adversaries in distributed systems for data mining are considered
as semi-honest (also referred to as honest but curious) [22]. This means that
they are legal participants that follow the protocol specification but try to learn
additional information given all the messages that were exchanged during the
protocol. This fact favours the adoption of the homomorphic model in PPDM
systems. First of all, there is no need for clients to construct complex zero-
knowledge proofs on the correctness of their inputs. Furthermore, a strong notion
of privacy for cryptographic elections, known as receipt-freeness or uncoercibility
[35] is not an issue here, as the scenario of coercing the clients to reveal (or, sell)
their private inputs does not seem realistic in the PPDM setting. In addition, the
universal verifiability requirement in online elections, where any outsider is able
to verify correctness of the final tally, can also be relaxed and replaced with a
requirement for atomic verifiability (i.e., where every participant in the protocol
is able to verify the accuracy of the results). For all these reasons, we may be
able to construct and choose among lightweight versions of some well-known
cryptographic schemes for online elections that follow the homomorphic model,
and adopt them to our PPDM setting.

2.1 Extending the classical homomorphic model

In this section we look at some very efficient extensions of the homomorphic
model, where 1-out-of-L or k-out-of-L selections are allowed (e.g., [26, 27]). In
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this way, the overall bits of information that a database sends to the miner could
be increased, leading to new possibilities.

Multi-candidate protocols have been first investigated in [29] and further
studied in [25], where the computation of the final tally grows exponentially
with the number L of candidates: Ω(

√
(C)L−1), with C being the number of

clients. Baudron et al [26] proposed the use of the Paillier cryptosystem [36] for
conducting homomorphic elections with multiple candidates. The Paillier scheme
provides a trapdoor to efficiently compute the discrete logarithm, thus making
computation of the tally very efficient, even for large values of C and L. They
also presented a threshold version of the Paillier cryptosystem, to be used in
the election setting. We briefly recall the Paillier cryptosystem, leaving out some
complex cryptographic details on the key generation and decryption functions
[36]. Let N = pq be an RSA modulus where p and q are two large primes, and
g be an integer of suitable order modulo N2. The public key is (N, g) while the
secret key is the pair (p, q). To encrypt a message M ∈ Zn, choose a random
x ∈ Zn and compute c = gMxN (modN2). The knowledge of the trapdoor (p, q)
allows to efficiently decrypt c and determine M . The reader may refer to [36, 26]
for further details.

The protocol in [26] is a 1-out-of-L protocol, where all the choices are in the
set (1,M, M2, ...ML−1), with M being an integer larger than the number C of
clients. A client, who wishes to select the mth candidate, encrypts her input with
the Paillier scheme, and then signs and publishes the result c = gMm

xN (modN2)
on a bulletin board. During the tallying stage, the authorities compute the “prod-
uct” of the encrypted inputs and then cooperate to decrypt the tally using thresh-
old Paillier decryption [26]. The decrypted tally can then be written in M -ary
notation: T = k0M

0 + k1M
1 + ... + kL−1M

L−1(modN), which will directly re-
veal all ki’s, where 0 ≤ ki ≤ C is the number of selections for candidate i. The
decryption process is publicly verifiable, due to the homomorphic property of
the Pallier scheme [26].

In a more recent work, Damgard et al [27] also proposed a generalization of
the Paillier cryptosystem and discussed its applicability to homomorphic elec-
tions. The size of each ciphertext in [27] is logarithmic in L, while the work for
computing the final tally is also reduced, compared with [26]. They also proposed
a threshold variant of the generalized system.

PPDM-1 approach: Mining with 1-out-of-L protocols. In the usual
(yes/no) setting (e.g., yes = 1 and no = 0), a client who does not want to partic-
ipate may give false information. Or, in a fully distributed setting for example,
where each client retains control of her transactions, the client may decide not
to participate, although we consider this as a privacy violation. As a result, the
null input should also be considered in homomorphic protocols. Furthermore,
knowledge cannot always be represented with yes/no decisions. For example,
a client may have to answer which group (e.g., among L age groups) her age
belongs to. These are some reasons why we are interested in multi-candidate
schemes, where in the simplest 1-out-of-L case each client makes one selection
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AGE

1 2 3 4 5 

[0-20) [20-40) [40-60) [60-80)  80 

0 1 0 0 0 

Bob

(23 years old) 

Alice

(Miner)

Five candidates 

Encryption of choice ‘2’ 

Fig. 1. A multi-candidate setting with 1-out-of-5 choices

out of L candidates. For simplicity, we assume that all questions to a database
can be reduced to a set of yes/no answers, as shown in Figure 1.

PPDM-2 approach: Mining with k-out-of-L protocols. 1-out-of-L pro-
tocols can easily be adapted to support up to k-out-of-L selections. An easy
generalization, with some loss of efficiency, would be to send up to k encrypted
messages [27]. Our proposal is to encode all possible L-bit numbers as separate
candidates, thus producing a set of 2L candidates. Figure 2 depicts our trivial
approach in the fully distributed setting, where the problem of allowing k-out-of-
L selections from a database record with L features is reduced to a 1-out-of-2L

multi-candidate protocol. Protocols with up to k-out-of-L selections could also
be used in a partially distributed scenario, where the full database is horizontally
partitioned into a small set of client partitions, with each client possessing R full
records of customers’ transactions. In this case, Bob would send R encrypted
messages to the miner, where R is equal to the rows of the table in his database.

Encryption of choice ‘26’ 

Thirty two candidates 

00000 

00001 

…

11010 

…

11111

0

1

…

26

…

31

Miner

Bob

(married, high income, 

no accidents, insured for 

life, no children) 

Bob’s Database 

Marital

Status

High Income 

(above 50K) 

History of 

Accidents 

Life

Insurance

Has

Children

1 1 0 1 0 

Fig. 2. A trivial way to turn a 1-out-of-L scheme into a k-out-of-L scheme
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3 Reviewing the (Yang et al) scheme

In this section we briefly describe the work in [1], which is, to our best of knowl-
edge, the first scheme that used a variant of the homomorphic election model in
order to build a privacy preserving frequency mining algorithm. This algorithm
is then used in [1] as a building block to design a protocol for naive Bayes learn-
ing. The authors in [1] also discuss the application of this algorithm to other
data mining techniques such as decision trees and association rule mining. A
fully distributed setting is considered, where the clients’ database is horizontally
partitioned, and every client possesses her own data.

We briefly describe the PPDM protocol of [1], where a miner mines a large
number of client data sets to compute frequencies of values. Let G be a group
where the Discrete Logarithm problem is hard. All operations are done modp,
where p is a publicly known and sufficiently large prime number. In a system with
n clients, each client possesses two pairs of keys: (xi, Xi = gxi), (yi, Yi = gyi),
with g being a (publicly known) generator of the group G. Each client Ui knows
her private keys (xi, yi), with values (Xi, Yi) being the corresponding public
keys. Furthermore, the protocol requires all clients to know the values X and
Y , where X =

∏N
i=1 Xi, and Y =

∏N
i=1 Yi. Each client is able to give a yes/no

answer di to any question posed by the miner and the miner’s goal is to learn
N∑

i=1

di. In the protocol of [1], depicted in Figure 3, all clients in the system use

a variant of the ElGamal encryption scheme [37]. For correctness and privacy
analysis, please refer to [1].

Client ( iU ) Miner

ii yd

i Xgm ,
(1)

ix

i Yh

(2)
dn

i
i

i g
h

m
r

1

(3) “Brute force” r:

for nd  to1

if rg d then

        output d

Fig. 3. A schematic representation of the protocol in [1]

Observe that the computation of the tally (i.e., the result d that equals the
sum of the plaintext inputs) in the scheme of [1], as well as in the classical ho-
momorphic model of [25], involves a brute-force attack on the value gd in order
to find the discrete logarithm. This stands because there are no trapdoors to de-
termine d from gd in ElGamal variants [25]. In settings with only two candidates
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(e.g., yes/no) this is a relatively easy computation, at least for a moderately
sized number of clients. However the same is not true for multi-candidate selec-
tions in large-scale systems. To address this issue, in Section 2.1 we discussed
some very efficient protocols for computing the tally in multi-candidate protocols
with very large numbers of clients.

3.1 Weaknesses and attacks

We briefly describe two weaknesses of the protocol in [1]. The first weakness is
a minor one and refers to the need that each client must choose new xi and
yi values after each execution of the protocol. This is actually a requirement in
every randomized encryption scheme, where new randomness is used to increase
the cryptographic security of the encryption process against chosen plaintext
attacks [33]. For example, in Figure 3, if the client Ui uses the same xi and
yi values during two successive runs, it will be trivial for an attacker (in the
semi-honest model) to find out Ui’s answers by trial and error.

The above weakness cannot be considered as an attack, since the authors in
[1] write a remark about the need for updating the (xi, yi) values. However we
rather consider this as a scalability issue: Prior to the execution of each run of
the protocol (e.g., possibly during a key setup phase) each client must obtain or
compute the numbers X and Y which are functions of the public keys (Xi, Yi)
of all system clients. In a fully distributed and large-scale scenario, where a very
large number of system clients hold their own records, it may be difficult to
pre-compute and/or publicize these values, turning the key setup phase into a
complex procedure, especially in cases where the number of participants is not
constant through different runs of the system.

A DOS attack. We also discuss a second weakness of the scheme in [1], which,
under preconditions, could lead to a Denial Of Service (DOS) attack. We are
unaware of any mention of this attack in the literature, and therefore briefly
describe it here. We argue that a single client may be able to disrupt the system.
Indeed, in a system with say three clients U1, U2, U3, let us assume that U2 does
not send her input, because of a system crash. Then the protocol executes as in
Figure 4 and a result cannot be found.

Client ( 1U ):

Miner:

11
1

yd
Xgm , 1

1

x
Yh

))((

))((
2

1 31321

31321

xxyyy

yyxxx
d

i
i

i

g

g
g

h

m
r

Client ( 3U ):
33

3

yd
Xgm , 3

3

x
Yh

Fig. 4. A run with two active clients in a system with three registered clients
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One could argue that in the semi-honest threat model, all clients will adhere
to the protocol specification and will not abstain from the protocol, however this
is an unrealistic assumption, especially in large-scale protocols (e.g., 10000 was
the number of clients used in the experimental results in [1]). Furthermore, the
semi-honest model does not preclude non-malicious system crashes or network
failures. Observe that a client does not know a priori who will participate in the
protocol, so the obvious fix of constructing the values X and Y as a function of
the number of active participants will not work.

4 A generic Random Forests (RF) classifier

4.1 Introducing standalone RF

Nowadays, numerous attempts in presenting ensemble of classifiers towards in-
creasing the performance of the task at hand have been introduced. A plethora of
them has portrayed state-of-the-art results in terms of precision and recall mea-
sures. Examples of such techniques are Adaboost, Bagging and Random Forests
[38].

Random forests [39] are a combination of tree classifiers such that each tree
depends on the values of a random vector sampled independently and with the
same distribution for all trees in the forest. The generalization error of a forest of
tree classifiers depends on the strength of the individual trees in the forest and
the correlation between them. Using a random selection of features to split each
node yields error rates that compare favorably to Adaboost, and are more ro-
bust with respect to noise. While traditional tree algorithms spend a lot of time
choosing how to split at a node, Random Forests put very little effort into this.
Compared with Adaboost, Random Forests portray the following characteristics:

1. The accuracy is as good as Adaboost and sometimes better.

2. They are relatively robust to outliers and noise.

3. They are faster than bagging or boosting.

4. They provide useful internal estimates of error, strength, correlation and
variable importance.

5. They are simple and easily parallelized.

A random forest multi-way classifier Θ(x) consists of a number of trees, with
each tree grown using some form of randomization. The leaf nodes of each tree
are labeled by estimates of the posterior distribution over the data classes. Each
internal node contains a test that best splits the space of data to be classified. A
new, unseen instance is classified by sending it down every tree and aggregating
the reached leaf distributions. The process is depicted in Figure 5:
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Fig. 5. Hierarchical decomposition of an RF classifier on a non-distributed data set

Randomness can be injected at two points during training: in sub-sampling
the training data so that each tree is grown using a different subset; and in se-
lecting the node tests. In our approach, we shall discuss the former situation, and
argue that using privacy preserving protocols in randomly selected instance vec-
tors supports the creation of robust RF, thus allowing for effective Data Mining
in horizontally-partitioned data sets. For vertically partitioned type of parti-
tioned data, the latter approach needs to be taken into consideration. However,
for the time-being this is out of the paper’s scope.

4.2 Privacy-preserving RF for Horizontally Partitioned (HP) data.

By the term horizontally partitioned data, we mean that parties (≥ 3) collect
values from the same set of features but for different objects. Their goal is to
find an improved function for predicting class values of future instances, yet
without sharing their data among each other. Thus, we enroll a collaborative
approach where data need to be shared in a secure manner, and the final model
will predict class labels without knowing the origin of the test instance. Similar
to previous approaches such as [20], classification is performed individually, on
each party’s site, but the main contribution on the field is that during training,
data from other parties are used in order to enhance randomness, thus increase
the obtained classification accuracy. However, an assumption needs to be taken
into account: data are sharing a common distribution. For example, suppose
we have three different bank institutions, sharing financial information on their
customers in a HP manner (e.g., they all use features such as age, occupation,
income, marital status and sex ). In order to have a robust RF classifier, data
has to follow a similar distribution among banks, meaning that if one bank owns
data on a specific group of customers (e.g., professors) and the others own data
about a totally different group (e.g., farmers), the obtained accuracy would be
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severely deteriorated. We exploit the two strengths of RF i.e., randomness and
voting. The former deals with the issue of premature termination of the tree
learning process while the latter confronts data sparseness problems in an effec-
tive manner. In this work, we shall provide a protocol that allows for injecting
randomness into trees during learning and allow voting over the majority class
among all parties at classification time. More specifically, we shall discuss Ran-
dom Input Forests (RI) learning from HP data sets abd using the forest structure
to classify previous unseen test instances originating from one of the distributed
database parties. Prior to this analysis, an introduction to Out-Of-Bag (OOB)
selection of samples is included.

OOB estimates to monitor error, strength, and correlation. Out-of-
bag samples for tree Ti in a forest are those training examples that are not
used to construct tree Ti. As [39] portrayed, they give unbiased estimates of
error on future data, since we do not need to use cross validation. Furthermore,
oob samples enhance internal strength and correlation. By strength, we denote
the notion of a tree being able to be a fairly good model on its own. Correlation
among trees is related with the fact that errors are canceled out between different
trees. Therefore, our framework uses the following procedure: Each new training
set is drawn, with replacement, from the training set of the other parties. Then
a tree is grown on the new training set using random feature selection. The trees
grown are not pruned. Exact measures of strength and correlation are described
in [39, 40] and will not be explained so forth.

4.3 Random input forests

Our privacy-preserving protocol for training random forests at each party by
inserting randomness from different ones is consisted of two distinct phases. At
the former one, each party is collaborating using the procedure proposed by
[20], in order to collect the whole set of available values per each attribute. This
knowledge is particularly important for the next phase, where each party will
require a certain number of instances from the others (again, we note that more
than three parties are needed). The complete algorithm is as follows:

Each party selects K trees to grow :

– Build each tree by:
• Selecting, at random, at each node a small set of features (F ) to split on

(given M features). From related research, common values of F are:
1. F = 1
2. F = log2(M) + 1

F is held constant while growing the forest. Create a random instance
based on the values of the complete feature set and ask the other parties
to vote if they own it. (based on the afore-mentioned PPDM approach).
Since F is significantly smaller that M , the number of candidate in-
stances that each party will create is computationally efficient to be
handled by the PPDM approach.
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• For each node split on the best of this subset (using oob instances)
• Grow tree to full length. There is no pruning.

To classify an unseen, new instance X, collect votes (again using the PPDM
approach) from every tree in the forest of each party and use general majority
voting to decide on the final class label.

5 Conclusions

In this paper we discussed privacy issues in distributed data mining and argued
in favor of borrowing knowledge from a broad literature dealing with crypto-
graphic elections via the Internet. The goal is to use efficient cryptography in
order to perform privacy preserving data mining in statistical databases, while
maintaining the accuracy of the results. We proposed a PPDM approach based
on recent homomorphic schemes for multi-candidate elections [26, 27] in order to
cryptographically protect privacy in large-scale distributed data mining applica-
tions, without sacrificing scalability and efficiency. We reviewed a recent scheme
[1] that used a variation of the classical homomorphic model [25] for online elec-
tions, discussed some weaknesses and described a security attack. Furthermore
we proposed the use of the PPDM approach as a building block to obtain a Ran-
dom Forests classification algorithm over a set of homogeneous databases with
horizontally partitioned data. The introduction of a privacy preserving classifier
from the domain of ensemble classifiers is a novelty of this work since such ap-
proaches have presented the most promising results as regards to precision and
recall measures in real-world Data Mining applications.

We believe that research in cryptographic PPDM must be continued and
practical solutions that balance the tradeoff between efficiency and security must
be sought. More particularly, further research on cryptographic PPDM should
take into account the various kinds of databases to work with, as well as the
various data mining technologies that need to be supported.
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