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Abstract. In this work, we study the problem of anonymity-preserving
data publishing in moving objects databases. In particular, the trajectory
of a mobile user on the plane is no longer a polyline in a two-dimensional
space, instead it is a two-dimensional surface: we know that the trajectory
of the mobile user is within this surface, but we do not know exactly
where. We transform the surface’s boundary poly-lines to dual points
and we focus on the information distortion introduced by this space
translation. We develop a set of efficient spatio-temporal access methods
and we experimentally measure the impact of information distortion by
comparing the performance results of the same spatio-temporal range
queries executed on the original database and on the anonymized one.
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1 Introduction

The technological advances in sensors and wireless communications have made
possible the offering of high accuracy in location tracking at a low cost [3],
[4], [8]. The increased location accuracy gave rise to a series of location-based
applications that exploit positional data to offer high-end services to their sub-
scribers [5]. We consider a population of mobile users who are supported by some
telecommunication infrastructure, owned by a telecom operator. Every user peri-
odically transmits through his/her mobile device a location update to some traf-
fic monitoring system residing in a trusted server of the telecom operator. The
transformation of the exact user location to a spatiotemporal area is achieved
through the use of k -anonymity. The k -anonymity principle for relational data
[15], [16] requires that each record in a given dataset is indistinguishable from
at least k− 1 other records with respect to a certain set of identifying variables,
collectively known as the ”quasi-identifier”. The k -anonymity principle requires
that the spatiotemporal area that is generated by the trusted server from the
exact location of the mobile user is such that the identity of the user cannot be
disclosed with a probability that is larger than 1/k, among k − 1 other users.
This trusted server is requested to efficiently answer Range Queries (RQs) of
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mobile users moving on the plane.
In our privacy model we assume an attacker who has knowledge of (i) the fre-
quent movement behavior of all the users in the system, computed by the trusted
server as part of its functionality, (ii) the anonymized location updates of the
users, as received and anonymized by the trusted server, and (iii) the algorithms
used by the trusted server to support user privacy. Our solution is capable of
ensuring the privacy of the users, even in the case that all this diverse knowledge
is at the disposal of the attacker. k -anonymity is essential to protect the privacy
of the users, starting from the point of request for a RQ service and continuing
for as long as the requested service withstands completion. As part of our frame-
work, we deliver the type of k -trajectory anonymity [6] that identifies k−1 users
that are close to the requester at the time of request and thus could have issued
the request. This includes a minimum circular spatial area Amin around the re-
quester, where the participants of the anonymity set should be searched for so
that the user is adequately covered up. The proposed framework deals with the
event of failure in the provision of k -anonymity, in the case where the number of
participants inside this minimum spatial area is less than k -1. In this case, the
trusted server postpones the servicing of the user request for a small period of
time. After that, if the anonymization process fails again, the requester is pro-
tected by blocking the servicing of the request. The proposed privacy framework
relies on a user privacy profile that stores the necessary information related to
his/her privacy requirements. This includes (i) the preferred value of k (in k -
anonymity) for each requested RQ service, (ii) the minimum circular spatial area
Amin, around the requester, where the participants of the anonymity set should
be searched for so that the user is adequately covered up. This threshold defines
the minimum extent of the spatial area that must replace the real location of
the user, in the anonymized request.
Based on the proposed privacy model we implement a framework that uses the
Spatial extensions of MySql 5.x to offer privacy in RQ services. This type of
queries focuses on the problem of indexing mobile users in two dimensions and
efficiently answering range queries over the users locations. This problem is moti-
vated by a set of real-life applications such as intelligent transportation systems,
cellular communications, and meteorology monitoring. There are two basic ap-
proaches used when trying to handle this problem; those that deal with discrete
and those that deal with continuous movements. In a discrete environment the
problem of dealing with a set of moving objects can be considered to be equiv-
alent to a sequence of database snapshots of the object positions/extents taken
at time instants t1 < t2 < . . ., with each time instant denoting the moment
where a change took place. From this point of view, the indexing problems in
such environments can be dealt with by suitably extending indexing techniques
from the area of temporal [17] or/and spatial databases [7]; in [12] it is elegantly
exposed how these indexing techniques can be generalized to handle efficiently
queries in a discrete spatiotemporal environment. When considering continuous
movements there exists a plethora of efficient data structures [9, 11, 13, 14, 18].
The common thrust behind these indexing structures lies in the idea of abstract-
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ing each object’s position as a continuous function f(t) of time and updating
the database whenever the function parameters change; accordingly an object is
modeled as a pair consisted of its extent at a reference time (design parameter)
and of its motion vector. One categorization of the aforementioned structures
is according to the family of the underlying access method used. In particular,
there are approaches based either on R-trees or on Quad-trees. On the other
hand, these structures can be also partitioned into (a) those that are based on
geometric duality and represent the stored objects in the dual space [11, 14] and
(b) those that leave the original representation intact by indexing data in their
native n-d space [2, 13, 18]. The geometric duality transformation is a tool heav-
ily used in the Computational Geometry literature, which maps hyper-planes in
Rn to points and vice-versa.

In this work, we study the problem of anonymity-preserving data publishing
in moving objects databases. In particular, the trajectory of a mobile user on
the plane is no longer a polyline in a two-dimensional space, instead it is a two-
dimensional surface: we know that the trajectory of the mobile user is within
this surface, but we do not know exactly where. We transform the surface’s
boundary poly-lines to dual points [11, 13] and we focus on the information
distortion introduced by this space translation. We develop a set of efficient
spatio-temporal access methods and, we experimentally measure the impact of
information distortion by comparing the performance results of the same spatio-
temporal range queries executed on the original database and on the anonymized
one.

In Section 2 we give a formal description of the problem. In Section 3 we
present the method of transforming the trajectory poly-lines to two-dimensional
surfaces. In Section 4 we present the duality transformation of surface’s boundary
poly-lines and we focus on the information distortion introduced by this space
translation. Section 5 presents an extended experimental evaluation and section
6 concludes the paper.

2 Definitions and problem description

We consider a database that records the position of moving objects in two dimen-
sions on a finite terrain. We assume that objects move with a constant velocity
vector starting from a specific location at a specific time instant. Thus, we can
calculate the future object position, provided that its motion characteristics re-
main the same. Velocities are bounded by [umin, umax]. Objects update their mo-
tion information, when their speed or direction changes. The system is dynamic,
i.e. objects may be deleted or new objects may be inserted. Let Pz(t0) = [x0, y0]
be the initial position at time t0 of object z. If object z starts moving at time
t > t0, its position will be Pz(t) = [x(t), y(t)] = [x0 + ux(t− t0), y0 + uy(t− t0)],
where U = (ux, uy) is its velocity vector. For example, in Figure 1 the lines depict
the objects trajectories on the (t, y) plane. We would like to answer queries of
the form: ”Report the objects located inside the rectangle [x1q , x2q ] × [y1q , y2q ]
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Fig. 1. Trajectories and query in (t, y) plane

at the time instants between t1q and t2q (where tnow ≤ t1q ≤ t2q), given the
current motion information of all objects”.

3 Trajectory poly-lines and two-dimensional surfaces

For every mobile user, we calculate a circular range query with center its cur-
rent 2-D location and radious a given value R defined by a minimum circular
spatial area Amin. If this circular spatial area includes at least k−1 other neigh-
bours, then the mobile user is adequately covered up. Otherwise, if the number
of participants inside this minimum spatial area is less than k -1, the trusted
server postpones the servicing of the user request for a small period of time.
After that, if the anonymization process fails again, the requester is protected
by blocking the servicing of the request. As a result, consecutive circular spatial
areas construct a 2-D buffer defined by its upper and lower boundary poly-lines
y′ and y′′ respectively, which anonymize the original trajectory y of mobile user
A (see figure 2). By using the Spatial extensions of MySql 5.x we can create each
mobile user as 2-dimensional point as follows:

CREATE TABLE Points (
name VARCHAR(20) PRIMARY KEY,
location Point NOT NULL,
description VARCHAR(200),
SPATIAL INDEX(location)
);

In order to obtain points in a circular area as a counted result ordered by
distance from the center of the selection area, we write:

SELECT COUNT(name), AsText(location), SQRT(POW( ABS( X(location)
- X(@center)), 2) + POW( ABS(Y(location) - Y(@center)), 2 )) AS distance
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FROM Points
WHERE Intersects( location, GeomFromText(@bbox) )
AND SQRT(POW( ABS( X(location) - X(@center)), 2) + POW( ABS(Y(location)
- Y(@center)), 2 )) ≤ @R
ORDER BY distance;

If the result returned is less than k -1, the trusted server postpones the ser-
vicing of the user request for a small period of time.

y1=u1t+a1

y2=u2t+a2A

A

R

A
R

Ry'1=u1t+a1+R

y''1=u1t+a1-R

y'2=u2t+a2+R

y''2=u2t+a2-R

Fig. 2. 2-D Buffer and Boundary Trajectories y′ and y′′ of mobile user A

So, the RQ service depicted in figure 1, was transformed to the Privacy-Aware
RQ service depicted in the figure 3:
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Fig. 3. Boundary Trajectories and query in (t, y) plane

If the whole buffer lies inside the query area (see the buffers of mobile users
O3 or O4 in figure 3), meaning that both upper and lower boundary poly-lines
lie in the query rectangle then the same holds for the original trajectory. If the
whole buffer lies outside the query area (see the buffer of mobile user O2 in figure
3), meaning that both upper and lower boundary poly-lines lie outside the query
rectangle then the same holds for the original trajectory. In the worst-case, we
face the distortion effect, where one of the two boundary poly-lines lie in the
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query rectangle (see the buffer of mobile user O1 in figure 3). In the later case,
we have to check what happens with the original trajectory.

4 Duality transformation of boundary-trajectories and
information distortion

The duality transform, in general, maps a hyper-plane h from Rn to a point in
Rn and vice-versa. In this subsection we briefly describe how we can address the
problem at hand in a more intuitive way, by using the duality transform on the
1-d case.

4.1 Hough-X transform

One duality transform for mapping the line with equation y(t) = ut + a to
a point in R2 is by using the dual plane, where one axis represents the slope
u of an objects trajectory (i.e. velocity), whereas the other axis represents its
intercept a. Thus we get the dual point (u, a) (this is the so called Hough-X
transform [11, 13]). Accordingly, the 1-d query [(t1q , t2q), (y1q , y2q)] becomes a
polygon in the dual space. By using a linear constraint query, the initial query
[(t1q , t2q), (y1q , y2q)] in the (t, y) plane is transformed to the following rectangular
query [(umin, umax), (y1q−t1qumax, y2q−t2q umin)] in the (u, a) plane. In a similar
way, for the upper (y′(t) = ut + a + R) and lower (y′′(t) = ut + a−R) boundary
trajectories, we get the dual points (u, a + R) and (u, a−R) as well as the final
(transformed) rectangular queries become [(umin, umax), (y1q−R−t1qumax, y2q−
R− t2qumin)] and [(umin, umax), (y1q + R− t1q umax, y2q + R− t2q umin)] respec-
tively in the (u, a) plane.

4.2 Hough-Y transform

By rewriting the equation y = ut + a as t = 1
uy − a

u , we can arrive to a different
dual representation (the so called Hough-Y transform in [11, 13]). The point in
the dual plane has coordinates (b, n), where b = − a

u and n = 1
u . Coordinate b is

the point where the line intersects the line y = 0 in the primal space. By using
this transform horizontal lines cannot be represented. Similarly, the Hough-X
transform cannot represent vertical lines. Nevertheless, since in our setting lines
have a minimum and maximum slope (velocity is bounded by [umin, umax]), both
transforms are valid. Similarly, the initial query [(t1q , t2q), (y1q , y2q)] in the (t, y)
plane can be transformed to the following rectangular query in the (b, n) plane:
[(t1q − y2q

umin
, t2q − y1q

umax
), ( 1

umax
, 1

umin
)]. In a similar way for the upper (y′(t) =

ut + a + R) and lower (y′′(t) = ut + a − R) boundary trajectories, we get the
transformed rectangular queries [(t1q − y2q−R

umin
, t2q − y1q−R

umax
), ( 1

umax
, 1

umin
)] and

[(t1q − y2q +R

umin
, t2q − y1q +R

umax
), ( 1

umax
, 1

umin
)] respectively in the (b, n) plane.
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Algorithm 1 Index-Building
1: Decompose the 2-d motion into two 1-d motions on the (t, x) and (t, y) planes;
2: For each projection, build the corresponding index structure;

4.3 The proposed algorithm for privacy-aware indexing

Let S = {y1, y2, . . . , yn} be the initial set of original trajectory equations, and
S′ = {y′

1, y
′′
1 , y′

2, y
′′
2 . . . , y′

n, y′′
n} the set of boundary trajectory equations defined

by the buffer.
Then, let HxS = {(u1, a1 + R), (u1, a1 − R), . . . , (un, ai + R), (un, ai − R)} and
HyS = {b′1, b′′1 , . . . , b′n, b′′n} be the set of dual Hough-X and Hough-Y transforms
respectively.

Algorithm1 depicts the procedure for building the index, Algorithm2 presents
the procedure for Partitioning the Mobile Users according to their velocity, and
Algorithm3 outlines the privacy-aware algorithm for answering the exact 2-d RQ
query:

Algorithm 2 Mobile-User-Partitioning
1: Users with small velocity are stored using the Hough-X dual transform;
2: The rest are stored using the Hough-Y dual transform;
3: Motion information about the other projection is also included;

Algorithm 3 Privacy-Aware-RQ Query
1: Decompose the query into two 1-d queries, for the (t, x) and (t, y) projection;
2: For each projection get the dual-simplex query;
3: For each projection calculate a specific criterion c (for details see [11, 13]) and

choose the one (say p) that minimizes it;
4: For all dual-points of HxS or HyS sets, search in projection p the simplex query

of the Hough-X or the MBR of the simplex query of the Hough-Y partition. In the
latter case, perform a refinement or filtering step ”on the fly”, by using the whole
motion information;

5: if the dual-points of both upper and lower boundary trajectories ((ui, ai +
R), (ui, ai − R) or b′i, b

′′
i ) lie inside the dual-simplex spatial area then the same

holds for the dual-point ((ui, ai) or bi) of the original trajectory;
6: else if the dual-points of both upper and lower boundary trajectories lie outside

the dual-simplex spatial area then the same holds for the dual-point of the original
trajectory;

7: else having in mind the value R, search the simplex query of the Hough-X or
Hough-Y partition for the dual-points of original trajectories;

In [11, 13], QHough−X is computed by querying a 2-d partition tree, whereas
QHough−Y is computed by querying a B+-tree that indexes the b parameters.
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Here, we consider the case, where the users are moving with non small velocities
u, meaning that the velocity value distribution is skewed (Zipf) towards umin in
some range [umin, umax] and as a consequence the QHough−Y transformation is
used (denote that umin is a positive lower threshold). Moreover, our method will
incorporate the Lazy B-tree [10] indexing scheme, since the latter can handle
update queries in optimal (constant) number of block-transfers (I/Os). As a
result, we get Algorithm 4.

Algorithm 4 Privacy-Aware Indexing of QHough−Y partition with Lazy B-tree
1: BEGIN PSEUDOCODE
2: Decompose the query into two 1-d queries, for the (t, x) and (t, y) projection;
3: For each projection get the dual-simplex query;
4: Search the MBR of the simplex query of the Hough-Y partition and perform a

filtering step ”on the fly”, by using the whole motion information;
5: Let B ⊂ HyS be the answer set of dual parameters, which satisfy the query above;
6: Result = 0;
7: For all elements of B do
8: Begin for
9: if (b′i ∈ B AND b′′i ∈ B) then

Result = Result ∪ (idofuseri, neighbours(idofuseri, k − 1);
10: return Result;
11: else if (b′i /∈ B AND b′′i /∈ B) then return Result;
12: else begin
13: if bi ∈ MBR of Hough-Y simplex partition then
14: Result = Result ∪ (idofuseri, neighbours(idofuseri, k − 1);return Result;
15: else return Result;
16: end
17: End for
18: END PSEUDOCODE

Let K be the number of bi parameters associated to boundary trajectories
of buffers that intersect with the query rectangle. Then, algorithm 4 requires
T (n) = O(Cost(LazyB tree) + K) I/Os or block transfers. Moreover, and ac-
cording to notations presented in [1], let say D be the initial Database that
stores the N original trajectories and D′ the Privacy-Aware Database that stores
the 2N boundary-trajectories. Let also say, Q(D) and Q(D′) be the Query Re-
sults obtained consuming T (D) and T (D′) block-transfers (I/Os) in D and D′

database schemes respectively. We define as Distortion Ratio = |Q(D)−Q(D′)|
max(Q(D),Q(D′))

and as Competitive Ratio = |T (D)−T (D′)|
max(T (D),T (D′)) . In the most of the cases, T (D′) >

. . . > T (D), thus it is very important to find out, how competitive to the optimal
one (T (D)) is the privacy-aware method that answers the query in D′. Since,
the distortion effect in D′ absolutely depends on parameter K, an experimen-
tal evaluation of Competitive Ratio vs K is also presented in the following
section.
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5 Experimental evaluation

This section compares the query performance of our privacy-aware method, when
incorporates STRIPES [14] (the best known solution), Lazy B-trees (LBTs) and
TPR∗-tree, respectively. We deploy spatio-temporal data that contain insertions
at a single timestamp 0. In particular, objects’ MBRs are taken from the LA
spatial dataset (128971 MBRs) 1. We want to simulate a situation where all
objects move in a space with dimensions 100x100 kilometers. For this purpose
each axis of the space is normalized to [0,100000]. For the TPR∗-tree, each object
is associated with a VBR (Velocity Bounded Rectangle) such that (a) the object
does not change spatial extents during its movement, (b) the velocity value
distribution is skewed (Zipf) towards 30 in range [30,50], and (c) the velocity
can be either positive or negative with equal probability. As in [2], we will use a
small page size so that the number of index nodes simulates realistic situations.
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Fig. 5. qRlen = 2000, qV len = 5, qT len = 50, Rmax = 500

Thus, for all experiments, the page size is 1 Kbyte, the key length is 8
bytes, whereas the pointer length is 4 bytes. Thus, the maximum number of
entries (< x > or < y >, respectively) in both Lazy B-trees and B+-trees is
1 Downloaded from the Tiger website http://www.census.gov/geo/www/tiger/.



10 S.Sioutas et al.

Competitive Ratio vs Distortion Parameter K

0

0,2

0,4

0,6

0,8

0 5 10 15 20 25

Distortion Parameter K
C

o
m

p
et

it
iv

e 
R

at
io Competitive_Ratio

(STRIPES)

Competitive_Ratio
(LBTs)

Competitive_Ratio
(TPR*)

Competitive Ratio vs Distortion Parameter K

0

0,2

0,4

0,6

0,8

1

0 100 200 300

Distortion Parameter K

C
o

m
p

et
it

iv
e 

R
at

io Competitive_Ratio
(STRIPES)

Competitive_Ratio
(LBTs)

Competitive_Ratio
(TPR*)

Fig. 6. qV len = 10, qT len = 50, qRlen = 400 (top), qRlen = 1000 (bottom), Rmax =
100 (top), Rmax = 200 (bottom)

1024/(8+4)=85. In the same way, the maximum number of entries (2-d rect-
angles or < x1, y1, x2, y2 > tuples) in TPR∗-tree is 1024/(4*8+4)=27. On the
other hand, the STRIPES index maps predicted positions to points in a dual
transformed space and indexes this space using a disjoint regular partitioning
of space. Each of the two dual planes, are equally partitioned into four quads.
This partitioning results in a total of 42 = 16 partitions, which we call grids.
The fanout of each non-leaf node is thus 16. For each dataset, all indexes ex-
cept for STRIPES have similar sizes. Specifically, for LA, each tree has 4 lev-
els and around 6700 leaves apart from STRIPES index which has a maximum
height of seven and consumes about 2.4 times larger disk space. Each query
q has three parameters: qRlen, qV len, and qT len, such that (a) its MBR qR

is a square, with length qRlen, uniformly generated in the data space, (b) its
VBR is qV = −qV len/2, qV len/2,−qV len/2, qV len/2, and (c) its query inter-
val is qT = [0, qT len]. The query cost is measured as the average number of
node accesses in executing a workload of 200 queries with the same parameters.
Implementations were carried out in C++ including particular libraries from
SECONDARY LEDA v4.1.

5.1 Query cost comparison

We measure the Competitive Ratio of LBTs method (this method incorporates
two Lazy B-trees that index the appropriate b parameters in each projection
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(top), Rmax = 200 (bottom)
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respectively, and finally combines the two answers by detecting and filtering all
the pair permutations), the TPR∗-tree and STRIPES presented in [18] and [14]
respectively, using the same query workload, after every 10000 updates. Figures
4 up to 8 show the Competitive Ratio as a function of K (for datasets gener-
ated from LA as described above), using workloads with different parameters.
Parameter K represents boundary trajectories of buffers that intersect with the
query rectangle, and obviously require an additional filtering on the fly process.
Obviously, the required number of block transfers depends on the answer’s size
as well as the size of K.

Figure 4 depicts how competitive to the optimal solution the LBTs method
is, in comparison to TPR∗-tree and STRIPES. The Ratio degrades as the query
rectangle length grows from 100 to 1000. When the query rectangle length or
equivalently the query surface becomes extremely large (e.g. 2000), then the
STRIPES index becomes more competitive (see Figure 5).
Figure 6 depicts how competitive to the optimal solution the LBTs method
is, towards to TPR∗-tree and STRIPES, in case the velocity vector grows. The
Ratio degrades as the query rectangle length grows from 400 to 1000.
Figure 7 depicts the performance of all methods in case the time interval length
degrades to value 1. Even in this case, the LBTs method is more competitive than
STRIPES and TPR∗-tree. As query rectangle length grows from 400 to 1000, the
LBTs method advantage decreases; we remark that STRIPES becomes faster,
whereas LBTs method has exactly the same performance with the TPR∗-trees.
Figure 8 depicts the efficiency of LBTs solution in comparison to that of TPR∗-
trees and STRIPES respectively in case the time interval length enlarges to 100.

6 Conclusions

We presented the problem of anonymity preserving data publishing in moving
objects databases. In particular, we studied the case where the trajectory of a
mobile user on the plane is no longer a polyline in a two-dimensional space,
instead it is a two-dimensional surface. By transforming the surface’s boundary
poly-lines to dual points we experimentally focused on the impact of information
distortion introduced by this space translation.
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