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Abstract: - The examination of differences in intra-hemispheric coherence and a novel method based on 
computational geometric algorithms between the left and right hemispheres of the same EEG. The Coherence 
and Computational geometry methods are computed from the same EEG segment and especially in the alpha 
and beta activities. The Results of the application of Coherence and Computational geometry methods showed 
that beta activity differed dramatically in the occipital intra-hemisphere. In conclusion, Computational 
Geometry method showed that it can give an accurate solution for EEG medical diagnostic purposes, 
especially in those patient cases which present severe asymmetric brain damage. 
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1   Introduction 
Power spectrum and coherence analysis of the EEG 
has often been applied to the study of various forms 
of brain dysfunction. For example, the power 
spectrum in coma due to severe brain injury is of 
established prognostic [1].  
   Coherence, a measure of cross-correlation in the 
frequency domain, may be more useful than power 
in prognostication of closed head injury [2]. A high 
coherence is suggestive of a relationship between 
two signals, such as one driving the other, mutual 
driving, or both partly driven by a common input 
signal [3]. Since coherence is a ratio of coherence 
power to total power, changes in coherence cannot 
be simply the result of amplification or filtering of 
the power spectrum, but rather imply changes in 
functional connectivity. 
   Coherence has been found to vary with numerous 
disease states, but the direction of the change is 
inconsistent across those states. Certain regions and 
frequency ranges show increases in coherence in 
multi-infarct dementia [4], AIDS (Newton et al., 
1994), and mild head injury [2], while decreases are 
observed in Altzheimers’s disease [5] and 
depression [6]. In some disease states the changes 
are more complex. 
   In the present study we introduced a novel method 
of EEG coherence, which is based on the basic 
Computational Geometric Algorithm (CGA) [7]. 
Accordingly we created a convex polygon in which  

 
the spectrum of the EEG was enclosed. Taking this 
into account we introduce a novel method, which is 
based on the intersection of two symmetrical 
spectral convex density areas. In particular, each 
convex density area corresponds with the left and 
right intra-hemispheres.  
   The advantage of the proposed method on the one 
hand is to simplify the existing the EEG coherence 
and power spectrum methods with regard to our 
objective for easier observation by neurologists. On 
the other hand we proposed an accurate quantitative 
method in which the calculation of the variation of 
two spectral symmetric hemispheric regions is 
carried out using the fraction proportion of the 
corresponding convex polygons [8]. 
   Finally the proposed method is compared with the 
coherence EEG method for evaluation.  
    
   The paper is structured as follows: In Section 2 
“Overview of the Method” we give an overview of 
the two comparative methods (coherence and CGA). 
In section 3 “Results” we described the 
implementation of the two aforementioned methods, 
which are tested with the same EEG data. Finally, in 
section 4, conclusions along with future work are 
discussed. 
 
 
 



 

 

2 Overview of the Method  
 
 
2.1 Coherence analysis 
EEG coherence was calculated intrahemispherically 
(Fig. 1), because the majority of connections are 
within the same hemisphere (Nunez, 1981). 
Coherences were calculated separately over the left 
and right anterior posterior axes (see Fig. 1): from 
prefrontal electrodes to frontal (Fp1-F3, Fp2-F4), 
central (Fp1-C3, Fp2-C4), parietal (Fp1-P3, Fp2-P4) 
and occipital electrodes (Fp1-O1, Fp2-O2), and 
from occipital electrodes to frontal (F3-O1, F4-O2), 
central (C3-O1, C4-O2) and parietal electrodes 
(P3-O1, P4-O2). The interelectrode distances were 
7, 14, 21 and 28 cm on average for Fp-F, Fp-C, 
Fp-P, and Fp-O coherences, respectively, and 21, 14 
and 7 cm for F-O, C-O, and P-O coherences.  All 
spectra ranged from 0.5 cycles per second (Hz) to 30 
Hz with a 0.5 resolution. EEG coherence spectra 
were calculated for every 0.5 Hz frequency band, 
using the formula [9]: 
 

coh = 
( )cross spectrum( )1,2

2  

 power spectrum( )1  X power spectrum( )2  )(1) 

 
   Where the power spectrum of each EEG overlap 
segment was computed using Bartlett’s periodogram 
method (Haukin, 1996) as follows: 
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   While, the cross spectrum is calculated by the 
following formula: 
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   Furthermore, as is shown in this formula, EEG 
coherence measures the square of the linear 
association between the two signals and is analogous 
to the square of the correlation coefficient. Thus, 
coherence ranges from 0 to 1.                             
Finally, the EEG coherence of equation (1) is 
evaluated by the standard error of the mean d1.  

 
Fig. 1.  EEG was measured on the following scalp 
locations: pre-frontal (Fp1; Fp2), frontal (F3, F4), 
central (C3; C4),  parietal (P3, P4) and occipital 
(O1; O2) 
 
 
2.2 CGA Method 
The following steps describe the proposed CGA 
method: 
1. An EEG segment of a pair of electrodes from 

the left hemisphere is submitted to power 
spectrum processing according to the equation 
(2). Thus, two vectors BxP

)
 (power) and x̂f  

(frequency) are produced.  
2. From the above vectors the unsuitable elements 

are eliminated in order to create purely alpha or 
beta activity vectors 

3. The elements of the new vectors are put on the 
Cartesian plane. In particular, the elements of 

x̂newf  are put on axis x and the elements of 

BxnewP
)

axis are put  on axis y.  

 
Fig. 2.  An example of the characteristic convex 
polygon, which encloses the spectral area of alpha 
activity 



 

 

4. According to the O’Rourke algorithm [7] a 
convex polygon C1 is created, which is 
considered to be a specific characteristic 
polygon because it encloses all the spectral 
activity of the examined EEG segment. 

5. The same procedure, according to the four 
above steps, is repeated for the symmetrical 
electrode pair found in the right hemisphere. 
Thus, a new convex polygon C2 is created. 

6. The areas of convex polygons C1 and C2 are 
calculated according to Chazelle’s algorithm 
[10]. 

7. The index d1 of the fraction proportion of the 
above convex polygon area is calculated. 
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3 Results 
 
 
3.1 Experimental part  
For our experiment we select a patient who was 49-
year-old right-handed woman who 20 years ago 
suffered 3 successive hemorrhages from a deep 
central arteriovenous malformation of her brain. 
   The data were recorded and digitized using the 
Telefactor Beehive EEG system (Telefactor 
Corporation, West Conshohocken, PA). The 
recordings included 18 EEG channels (Fig. 3) 
placed according to the international 10/20 system 
with an average reference, and included 
simultaneous video recording of the patient. The 
sampling frequency was 180 Hz.  Frequencies below 
1 Hz and above 64 Hz were removed by digital 
filtering.  
   In this study we used the right frontal electrodes 
pairs F8-F4 with the left symmetrical frontal 
electrode pairs F3-F7, the right central electrodes 
pairs (C4-T4) with the left symmetrical frontal 
electrode pairs (C3-T3) and the right occipital 
electrodes pairs (P3-T5) with the left symmetrical 
occipital electrode pairs (P4-T6). Thus, for our 
experiment we processed (4) four EEG segments 
whereof (8) eight EEG power and frequency vectors 
were produced, (4) four for the a-activity and (4) 
four for the beta activity.  
   Each segment provided one estimate of the power 
spectrum, and similarly one estimate of the 
coherence profile. A weighted mean of the estimates 
was constructed where the weighting of each 
estimate was proportional to the length of the 
corresponding recording. Error analysis was 

performed by calculating estimates derived from 50 
s of data, averaging where necessary (e.g. taking the 
mean of the estimates from two 25 s periods). The 
errors are therefore approximate, but fairly reflect 
the range of estimates. 

 
Fig. 3.   An example of a 10 sec long EEG record 
(sampling rate 180 Hz)  
 
   The calculations were performed using Matlab 
(version 5.2) with `psd' for computation of the 
power, `cohere' for computation of the coherence 
and ‘convex2’ for computation of the CGA method.   
Each used Welch's averaged periodogram method 
(Percival and Walden, 1993) with NFFT of 256 and 
a Hanning window of the same size. 
 
 
3.2 Results of the Coherence and CGA 
Methods 
The results of  intra-hemispheric coherence and the 
CGA methods from the frontal and central regions 
are shown in Fig. 4,5. This procedure was achieved 
using the steps described in Section 2. Furthermore, 
this procedure was repeated for the two activities 
(alpha 7.5-12.5 Hz and beta 12.5-18.5 Hz). The 
standard mean errors of the coherence analysis d1 
and the index d2 of the CGA method are given in 
table 1. 
   As can be seen in table 1 the largest value of the 
Coherence and CGA methods is found in the 12.5-
18.5 Hz range, in beta activity and especially in the 
C3-T3 & C4-T4 electrode pairs. However, in the 
case of beta activity (P3-T5 & P4-T6 electrode 
pairs) for both methods the minimum values are 
produced. Thus, it can be concluded that the 



 

 

occipital part of the brain has suffered damage (Figs. 
6, 7) 
 
 
 

  COHERENCE 
  ANALYSIS  

       CGA 
  METHOD 

Electrodes 7.5-12.5 
    Hz 

12.5-18.5 
    Hz 

7.5-12.5 
    Hz 

12.5-18.5 
    Hz 

C3-T3 & 
 C4-T4 0,4967 0,9917 0,4834 0,9234 

F8-F4  & 
F3-F7 0,6524 0,9210 0,6256 0,8980 

P3-T5  & 
P4-T6 0,4796 0,3781 0,4231 0,3214 

 
Table 1. CGA method and coherence values with 
standard errors in the mean 
 
 
 
 

  
Fig. 4.  CGA method regarding to C3-T3 & C4-T4 
electrode pairs in alpha activity (7.5-12.5 Hz) 
spectral area. 
 
 

  
Fig 5.  Coherence analysis method regarding to C3-
T3 & C4-T4 electrode pairs in alpha activity (7.5-
12.5 Hz) spectral area. 
 
 

 
Fig. 6. CGA analysis method regarding to P3-T5 & 
P4-T6 electrode pairs in beta activity (12.5-18.5 Hz) 
spectral area. 
 
 



 

 

 
Fig 7.  Coherence analysis method regarding to P3-
T5 & P4-T6 electrode pairs in beta activity (12.5-
18.5 Hz) spectral area. 
 
 
4  Conclusion   
Quantitative analysis of the EEG reveals a striking 
asymmetry in the CGA method, and a subtler 
asymmetry in the Coherence analysis according to 
the results of table 1. Furthermore, the CGA method 
shows that for a neurologist it is an easier method of 
observation as the spectral variation among the 
symmetrical brain regions is more unambiguous. 
   Moreover, the values index d2 (CGA method), 
when compared to those of index d1 (Coherence 
method) generally agree (table 1).  Furthermore, the 
difference in both methods (CGA, Coherence) 
between the two hemispheres is most dramatic 
occipitally, where the damage to the sub-cortical 
structures is most asymmetric, with total destruction 
on the right side and some preservation on the left of 
the thalamus and relatively intact basal ganglia 
structures [11]  
   Taking this into account, the proposed CGA 
method may be characterized as accurate for 
medical diagnostic purposes. 
As a final comment, it may also be interesting to 
apply the proposed method to groups of subjects 
with pathological EEGs, in the sense that 
comparative analysis between "healthy" and 
"pathological" results may reveal useful information 
about the specific pathologies and their differential 
diagnosis. 
Finally, more extensive experimentation is 
necessary, in order to obtain statistically significant 
results and thus verify the conjecture of our 
proposed method. 
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