
Secure and Practical Key Establishment for

Distributed Sensor Networks

Panayiotis Kotzanikolaou1, Emmanouil Magkos2,
Dimitrios Vergados3 and Michalis Stefanidakis2

Department of Informatics1

University of Piraeus, 80, Karaoli & Dimitriou, 18534, Piraeus, Greece
pkotzani@unipi.gr

Department of Informatics2

Ionian University, Platia Tsirigoti, 49100, Corfu, Greece
{emagos,mistral}@ionio.gr

Department of Information and Communication Systems Engineering3

University of the Aegean, Karlovassi, Samos, GR-832 00, Greece
vergados@aegean.gr

February 5, 2008

Abstract

Key establishment in sensor networks is a challenging task, due to
the physical constraints of sensor devices and their exposure to several
threats. Existing protocols based on symmetric cryptography are very ef-
ficient but they are weak against several node impersonation and insider
attacks. On the other hand, asymmetric protocols are resilient to such at-
tacks but unfortunately, they are not feasible for sensor networks, even in
their most efficient versions (e.g. the Elliptic Curve Diffie-Hellman family
of key agreement protocols). In this paper we present two pairwise key es-
tablishment protocols for sensor nodes in unattended Distributed Sensor
Networks (DSNs). The first protocol is hybrid and it combines asymmet-
ric (Elliptic Curve) cryptography with symmetric key techniques. The
second protocol is fully asymmetric. Furthermore, through simulations,
we measure the efficiency of the proposed protocols in comparison with
existing hybrid protocols. Our results show that under conditions, it is
feasible for highly sensitive applications of static sensor networks to em-
ploy partial or fully asymmetric key establishment techniques and thus
extend their security properties.

1 Introduction

Sensor nodes are small and inexpensive communication devices with limited
storage, computation and energy capabilities. A typical sensor node is the

1

MICA2 mote, with 8-bit 8MHz processor, 128KB program memory, 4KB EEP-
ROM and small size [8]. Sensor nodes are also able to communicate with each
other with radio of limited bandwidth, thus forming a Wireless Sensor Network
(WSN). In WSNs there is usually one or more base stations that connect the
sensor nodes to the rest of the world. A base station is a computationally robust
device that is usually assumed as being part of a trusted (secure) computing
environment and that it cannot be easily compromised (e.g. [17, 28]). From a
security perspective, of special interest are self-organizing WSNs where the BS
does not take any part in the security mechanism of the network. Self-organizing
WSNs may be subdivided into two distinct categories.

In hierarchical sensor networks, some nodes may be more powerful than other
nodes, and/or play a different role than the rest of the nodes in the network. In
a multi-level hierarchy for example, the network may be organized into clusters;
in each cluster there is a clusterhead which may aggregate, process and forward
information to the base station, or even take part in establishing link (path) keys
within (or between) clusters (e.g.[27]). On the other hand, in distributed sensor
networks (DSNs) there is not a fixed infrastructure and all nodes are equal in
terms of sensing, routing and security capabilities. They also play their role in
the network without external guidance or supervision. Schemes that follow this
model assume that all nodes can be senders and receivers of a message.

1.1 Security in DSNs

The environment where the sensor nodes are deployed in the case of DSNs may
be controlled (e.g. home, office) or uncontrolled (e.g. hostile territory). Of
special interest is the case of unattended DSNs in hostile environments where
all nodes are assumed physically accessible, and consequently more vulnerable.
If a node gets compromised (for example by physical or logical attacks that
extract all keys from its memory), the adversary can use these keys to launch
several passive and active attacks against the network [6, 32]. For example,
an adversary may try to eavesdrop or modify data and routing information,
impersonate a node, or inject misleading information in the network. Moreover,
detecting compromised nodes is very difficult. As a result, a challenge is to
minimize the consequences of such compromise, especially in mission critical
applications. As a minimal protection, compromising the cryptographic keys of
a node at a given time, should not reveal past communications protected with
keys used in past time, a property known as forward secrecy [15].

Key management in unattended DSNs is a difficult task when the network
topology is also dynamic. If the environment is uncontrolled, deployment may
have to be performed by randomly scattering the nodes into the target area. In
DSNs with a dynamic topology, it is usually required that new nodes are able
to join the network in future time, in order to replace the exhausted ones or
simply to extend the network coverage. This can be achieved with multiphase
deployment protocols (see for example [12, 35]). In such protocols, the incoming
nodes are grouped in sets known as generations. Each generation of nodes joins
the network in a specific time (phase) during which the newly arrived nodes are

2

engaged in a bootstrap protocol in order to exchange keys and to secure their
communication with older nodes.

1.2 Our contribution

In this paper we present two pairwise key establishment protocols, suitable for
DSNs with multiphase deployment. These protocols employ efficient asymmet-
ric primitives, such as Elliptic Curve Cryptography and Implicit Certificates.
Preliminary versions of these protocols have been presented in [18, 23]. Due
to their public-key nature, the proposed protocols improve over the symmetric-
key based schemes of [12, 35], as they do not allow a compromised node to
impersonate other nodes belonging to the same or to a different generation.
Furthermore, they provide forward secrecy both in respect to a particular node
and a generation of nodes. Moreover, they do not require the assumption of
a protected bootstrapping period, although if such a protection exists the se-
curity of the protocol is further increased. Finally, our protocols improve over
the hybrid scheme of [16], since they support multiphase deployment, and do
not require the existence of full-functional devices. Furthermore, we analyze
the security properties and examine the feasibility of the proposed protocols in
several environments. The efficiency analysis shows that the proposed protocols
are scalable and efficient for low-capability static devices in terms of storage,
communication and computational complexity: the cost per node for a key es-
tablishment is reduced to one scalar multiplication with a random point plus
one with a fixed point.

2 Related work

Due to the resource constraints of sensor nodes and the lack of a fixed infras-
tructure, initial work for key management in DSNs focuses on symmetric-key
solutions [1, 13, 32, 35, 12]. Such solutions are considerably more efficient for
sensor nodes. However, they cannot provide adequate protection against imper-
sonation attacks in highly sensitive applications (see Section 7).

2.1 Symmetric key-establishment protocols

In these schemes a number of symmetric keys are generated and pre-loaded into
sensor nodes prior to their deployment. The degree of key sharing between the
nodes of the system is varying.

In the case of static shared key protocols, a master global key is pre-shared
throughout the network, or a unique link key is pre-shared between each pair
of nodes in the network. A third approach is that the keys are pre-shared using
deployment knowledge. In global key pre-distribution (e.g. [1, 32, 5]) all nodes of
the network (or a group of nodes in the same vicinity cluster) are pre-deployed
with a master network (or group) key. This solution is secure in controllable
environments and implies low storage cost. In uncontrollable environments, if a

3

single node is compromised then the security for the entire network (or group)
will be lost. In pairwise key pre-distribution, every node shares a secret key with
every other node of the network, or with its immediate neighbors. This approach
is perfectly resilient against node capture, but does not scale well and implies
a prohibitive cost in storage for large networks. In key pre-distribution with
deployment knowledge [11], keys are assigned given a priori knowledge of the
position of a node, with a non-negligible probability. Similarly, such solutions
are not suited to unattended DSNs with dynamic topology.

In the case of random key pre-distribution (e.g. [13, 7]), random ring of
keys are pre-distributed to each sensor, and then a key discovery phase is run
in order to establish pairwise keys and communication paths with each other.
The existence of such paths is not certain but can be guaranteed with a non-
negligible probability. Random key pre-distribution implies a trade-off between
connectivity and resilience. Moreover, the size of the key ring is increased
with the network size. Another case is polynomial-based key pre-distribution
(e.g. [2, 22, 29]). A polynomial share is distributed to each node, and using
this share, every pair of nodes is able to establish a link key. Solutions of this
category have a security parameter t, where a coalition of less than t + 1 nodes
knows nothing about the pairwise keys of other nodes.

Finally, with pairwise key establishment the sensor nodes can use pre-deployed
keying material in order to establish fresh link keys with their neighbors [4]. Af-
ter having these link keys in place, it is possible to find a trusted path between
any two nodes of the network. In the symmetric setting, the pre-deployed ma-
terial can be a group key or a network-wide master key [12, 35].

2.2 Key establishment protocols based on asymmetric cryp-
tography

Recent findings have demonstrated that, under conditions, public key cryptog-
raphy may be used for pairwise key establishment in WSNs [14, 16, 24]. While
it is impractical to use traditional public key cryptography or Key Distribution
Centers for establishing link keys between nodes, Elliptic Curve Cryptography
(ECC) can offer equivalent security with substantially smaller keys e.g., a 160-
bit key is expected to offer comparable security with an RSA 1024-bit key. Well
known implementations of ECC for key agreement, such as the MQV family of
protocols ([25, 21, 20, 19]) among others, are not optimally efficient, as they
involve expensive public key operations for explicitly verifying public key cer-
tificates and computing mutually agreed keys.

Huang et al [16] and Kotzanikolaou et al [18] proposed hybrid protocols
by combining ECC and symmetric techniques to perform pairwise key estab-
lishment between two neighboring nodes. The model of [16] suits hierarchical
WSNs well, since it assumes some fully functional devices that take most of the
cryptographic burden. The [18] model assumes that all nodes are equal, thus it
is conceivably more suitable to unattended DSNs with dynamic topology.

Both [16] and [18] are hybrid in that they replace some expensive public-key
operations with efficient symmetric ones. More specifically in [18], all nodes

4

belonging to the same group are pre-deployed with a (long-term) public key
pair and a symmetric group key. This group key is later used during an Elliptic
Curve Diffie Hellman (ECDH) [31] key establishment, to set a secure channel
for contributing some freshness to the ECDH key. The fully asymmetric scheme
of [23], addresses a weakness of the [18] scheme, which allows an adversary
to learn past communications of a compromised node. The new scheme has
similar communication and computation costs. Its improved security comes at
an increased storage cost for each node. A full performance analysis for the
asymmetric key establishment schemes will be given in Section 7.

2.3 Multi-phase DSN (MDSN)

In [17], newly arrived sensors are introduced to the network with the Kerberos-
like approach of using a Base Station as an intermediate online server. Other
schemes [35, 12], employ symmetric techniques to establish secure links between
sensors that are deployed in different phases (or, generations), but are not ade-
quately resilient against node capture [18]: if a node is compromised during the
bootstrapping period, then the corrupted node can present multiple identities
to other nodes of (the same) generation, an attack also known as a sybil attack
[10]. Furthermore, any compromised node belonging to a generation i is able
to pretend to newly deployed nodes that it belongs to a generation j > i and
establish a secure channel with them. This attack has been referred to as a
fake generation attack [18]. The fully asymmetric scheme [23] addresses most
security issues in unattended DSNs with multi-phase deployment. In Section 6,
a security analysis of the schemes in [18] and [23] will be presented.

3 Design goals

We will first describe the design goals for secure and efficient key establishment
in DSNs. Then we will describe a generic solution for asymmetric-key based
solutions as well as efficient implementations of the generic solution, suitable
for DSNs.

We assume that the network topology is dynamic and cannot be known in
advance. Sensor nodes are pre-deployed with some initial keying information
and credentials by a Trusted Authority (TA). The authority is trusted on
issuing correct user public data for the reconstruction of the implicitly certified
public keys. The authority is also trusted on not disclosing the long-term private
keys of the sensor nodes. We further assume that the underlying cryptographic
algorithms will not be broken.

3.0.1 Security goals and assumptions

We assume a network of sensor nodes that is deployed in a hostile territory.
We describe several cryptographic assurances and traditional security goals,
common to any system for key agreement in open networks, and elaborate in
the context of a MDSN.

5

1. Cryptographic assurances. The protocol has to offer authenticated key
agreement. Authentication should be mutual, while messages and keys
exchanged should be fresh. Any established keys should not be totally
controlled by any party. Both nodes should also obtain key confirmation,
i.e., assurance that the other node knows the agreed session key. The TA
is trusted on certifying public keys and on not disclosing long term secrets
that nodes are pre-deployed with.

2. Security against attacks. We assume both passive and active attackers
against the system. We follow the Dolev-Yao threat model [9]. The at-
tacker will eavesdrop, modify and replay messages in the protocol, steal
session keys and/or long-term keys, generation-wide keys and crypto-
graphic parameters, attempt to impersonate a node in a network or falsely
claim to belong to a given generation of nodes. We do not deal with denial
of service (DOS) attacks at the lower layers, which, can be orthogonally
addressed [34].

3. MDSN-specific security. We further elaborate on a set of requirements
that are specific to multiphase deployment sensor nodes:

• Known-key security per node. Compromise of past session keys
should not allow compromise of future session keys or impersonation
of a sensor node.

• Known-key security per generation. Compromise of generation-wide
keys should not allow compromise of future session keys or allowing
fake generation attacks.

• Perfect forward secrecy [15] per node and per generation. Compro-
mise of long term secrets (symmetric or asymmetric) should not com-
promise past session or generation-wide keys.

3.1 Efficiency goals

• Communication. The protocol should have minimal communication rounds
and the total transmitted bits should be kept low.

• Computation. The complexity of computation should be minimal. If
possible, pre-computation of several values can be used to reduce the total
computation time.

• Storage. The storage requirements of the key establishment protocol
should be minimal, regardless of the number of node generations. Since
the storage cost depends on the number of node generations, optimally, the
cost should increase logarithmically to the number of node generations.

6

4 A generic solution for asymmetric key estab-
lishment

We will first present a generic protocol for multiphase key establishment in
DSNs, which combines public key and symmetric cryptography. Then we will
discuss specific implementations by using well known practices.

We assume that during a setup stage, each node A is pre-deployed with the
following keying material:

• The public key reconstruction data PKinf
A , which will be used by other

nodes to implicitly confirm a certified public key of node A. Each node is
also pre-deployed with an authentic copy of the public certification key of
the TA.

• A private/public key pair PKA, SKA, to be used for entity authentication
as well as for key agreement. The mutually agreed key with any other node
B will be a secure function of their static key pairs (e.g. as in the Diffie-
Hellman protocol). As will be shown in the protocol, a set of random
nonces RA, RB will also be exchanged in order to be used as a ”salt” for
computing the final session key.

• Symmetric cryptographic material CryptN for network-wide authentica-
tion.

• Symmetric cryptographic material Cryptj to be used for intra-generation
authentication (i.e. within generation j). Cryptj can also be used as a key-
encrypting key for computing session keys with other nodes of the same
generation j, as well as with nodes belonging to an older generation. For
secure inter-generation communication with nodes belonging to a future
generation i, where i > j, the following mechanism will be used [35]; during
setup, the TA will bind, using a secure cryptographic transformation, the
key Crypti with the identity of the node A, thus producing credential
CryptAi . The transformation should not make it easy to compute Crypti
from CryptAi , or to replace A with another identity. Of course, a newly
arrived node B(i) (i.e., belonging to generation i) will be able to compute
CryptAi for an older node A.

Figure 1 presents a generic key agreement protocol for multiphase deploy-
ment DSNs. The schematic representation covers both cases of intra-generation
communication (i.e. the nodes A(j) and B(i) belong to the same generation and
i = j), as well as of inter-generation communication (i.e. the nodes A(j) and
B(i) belong to different generations and i > j).

At a high level, each pair of nodes exchange some public key reconstruction
data that will be used to compute the public keys for the key agreement pro-
tocol. Furthermore, each node encrypts and sends some randomness in order
to “salt” the mutually agreed key. Throughout the protocol, both nodes au-
thenticate their messages with the pre-deployed cryptographic credentials and

7

))(,,,(inf
A

A
iBAA REncNBPKM

)(A
A

i MAuth

),(, AB
A
iB RREncAM

)(BAB MAuth

ij

),(inf
BBB NPKM

)(BN MAuth
1

)(, BABA REncBM

)(AAB MAuth

B
m

B
i

iN

BBB

CryptCrypt

CryptCrypt
SKPKPK

,...,

,
,,

1

inf

2

3

4

A (j)

A
m

A
i

A
j

jN

AAA

CryptCryptCrypt

CryptCrypt
SKPKPK

,...,,...,

,
,,

1

inf

B (i)

Figure 1: A generic key agreement protocol for multiphase DSNs

prove possession of the established key by encrypting and/or authenticating the
exchanged messages. Observe that random values RA, RB, serve two purposes
in the protocol. First, they serve as challenges for mutual entity authentication.
Second, they serve as a salt to mutually agreed key. By using a suitably chosen
key derivation function, both nodes will be able to compute the same session
key.

At the end of the bootstrapping phase for the reference period i, and when
most nodes have performed intra-generation and/or inter-generation handshakes
with their neighbors, network nodes are programmed to delete all generation-
wide credentials Crypti, as well as credentials of the type CryptXi that were
pre-stored in an older node X or computed by a newer node that possesses
Crypti.

Note that the generic protocol can be suitable for key establishment in multi-
phase deployment DSNs, if the number and cost of public key operations is kept
low. In the next sections, we present efficient implementations of the generic
scheme.

8

5 Efficient implementations of key establishment
protocols for multiphase deployment DSNs

We describe two implementations of the generic scheme for MDSNs, namely a
hybrid and a fully asymmetric protocol. Both protocols are based on Elliptic
Curve Diffie-Hellmann (ECDH) key establishment [31]. Furthermore, Implicit
Certificates [33] are used to establish the authenticity of public encryption keys.

Both protocols involve a key pre-deployment phase and several key bootstrap-
ping phases. The key pre-deployment phase is executed before the initiation of
the network. Each sensor node is pre-deployed off-line by a trusted authority
CA with the appropriate keying material, which will be later used for pairwise
key establishment. The CA has no further involvement in the key establishment
protocol. Then, the nodes of the first generation are randomly deployed in the
area and the first bootstrapping phase is executed. This enables the initial nodes
to establish unique pairwise keys. A new bootstrapping phase is executed every
time a new generation of nodes arrives in the network, in order to enable the
incoming nodes to establish pairwise (link) keys with each other, as well as with
the existing nodes. After two neighbouring nodes establish a link key, no public
key operations are needed: a link key may be updated using purely symmetric
techniques i.e. the link key could be hashed to derive the next link key.

The hybrid protocol combines ECDH with Implicit Certificates and generation-
wide symmetric encryption keys. The generation key is used at the beginning
of the key boostrapping phase: every two nodes that belong to the same gen-
eration, create a temporary (weakly) secure channel in order to exchange some
randomness for a “fresh” ECDH key. At the end of each key bootstrapping
phase the respective generation-wide symmetric key is deleted.

The fully asymmetric key establishment protocol is basically a modified ver-
sion of the previous protocol. It also combines ECDH with Implicit Certificates.
However, this protocol is fully asymmetric and does not use any generation-wide
symmetric keys in order to exchange randomization. This leads to the gener-
ation of static ECDH pairwise keys between each pair of nodes. Each node is
pre-deployed with multiple public/secret Elliptic Curve (EC) key pairs, one for
each bootstrapping phase. During a specific phase, each node uses its corre-
sponding EC key pair in order to establish a key with every other node. At the
end of the bootstrapping phase, the corresponding EC key pair is deleted.

For the rest of this section, we first describe in detail the proposed hybrid
key establishment protocol. Then, we describe the fully asymmetric protocol,
based on its differences with respect to the hybrid version.

5.1 The hybrid protocol

Let q denote the order of the underlying finite field Fq and let E be a suitably
chosen elliptic curve defined over Fq. Let P denote a base point in E, the
generator point, and n be the order of P , where n is prime. Thus nP = O
and P �= O where O is the point at infinity. We assume that the discrete

9

logarithm problem in the group < P > of points generated by P is intractable.
Let qCA ∈ [2, n− 2] be a random integer selected by the Certification Authority
CA and QCA = qCA × P . The pair of the static secret/public key pair of the
CA is qCA, QCA.

5.1.1 The key pre-deployment phase of the hybrid protocol

The CA generates a network-wide symmetric key K, which will be used by all
nodes as an initial authenticator in order to avoid processing of fake “hello”
messages and prevent trivial DoS attacks. Furthermore, the CA also generates
a set of independent symmetric encryption keys, K1, K2, ..., Km, one key for
each of the m node generations. These keys are similar to the generation keys
of the LEAP protocol [35]; however, in the hybrid protocol these keys will only
be used to create a temporary channel in order to exchange randomness for the
key establishment.

The CA generates and pre-deploys each node with the appropriate key-
ing information (see Figure 2). We describe the key generation and key pre-
deployment phase for a node X of generation i, denoted as X(i). When no
further clarification is required, we will denote the node X(i) as X . The CA
selects a random number gX ∈ [2, n−2] and computes GX = gX ×P . Then, the
CA computes the Implicit Certificate for the node X as ICX = (GX , M), with
M = {i, IDX , tX}, where i is the generation of the node, IDX is a unique iden-
tifier for the node X and tX is the expiration time of the certificate. The CA
applies a cryptographic hash function h over ICX and from the octet h(ICX) it
obtains an integer eX , by using the conversion routine1 described in [31]. Then,
the CA computes the secret EC key of node X as qX = gX +eX ·qCA. The value
gX is not given to the node X and is deleted after the key generation process.
Otherwise, a compromised node would be able to extract the secret key of the
CA from values qX and gX . Observe that the pair (eX , qX) is an EC-Schnorr
signature [30], created by the CA, over the message M of the Implicit Certifi-
cate ICX of the node X . The corresponding public EC key QX is not stored at
node X ’s memory. Any other node, will be able to recover QX from the implicit
certificate ICX and the public key QCA of the CA.

After the computation of the public/secret key pair of the node X , the CA
computes the secret symmetric key values of the node. Since the node X belongs
to the ith generation (1 ≤ i ≤ m), the node will be given the corresponding
generation-wide key Ki. Furthermore, for all future generation keys, the CA
will compute for each node X the instance keys Ki+1(IDX) = fKi+1 [IDX], ...,
Km(IDX) = fKm [IDX], where f is a one-way keyed hash function. Finally, the
CA pre-deploys the node X with its secret EC key qX , the Implicit Certificate
ICX , the public key of the Certificate Authority QCA, the point P , the initial
authentication key K, the generation-wide key of the ith generation Ki and the
instance keys Ki+1(IDX), Ki+2(IDX), ..., Km(IDX).

1Informally, the idea is simply to view the octet string as the base 256 representation of
the integer (Section 2.3.8 of [31])

10

CA

Static public key pair: PqQq CACACA,

Initial network authentication key: K
Node generation keys: mKKK ,...,, 21

For each node X (i)

1. Select:
XX IDRg ,

2. Compute:

][)(
...

][)(

][)(

)(
),(

,,

2

1

2

1

XKXm

XKXi

XKXi

XX

CAXXX

XX

XX

XX

XX

IDfIDK

IDfIDK

IDfIDK
PqQ

qegq
eICh

MGIC
tIDiM
PgG

m

i

i

3. Predeploy each node X (i) of generation i with:
)(...,),(,,,,,, 1 XmXiiCAXX IDKIDKKKPQICq

(Secure channel)

X (i)

Figure 2: The key pre-deployment phase of the hybrid protocol

5.1.2 The key establishment phase of the hybrid protocol

In this phase, two nodes will use their pre-deployed keys to perform an au-
thenticated pairwise key establishment. There are two cases to be considered:
key establishment between nodes of the same generation and key establishment
between nodes of different generations.

Let A(j), B(i) be two nodes belonging to the generations j, i respectively,
such that 1 ≤ j ≤ i ≤ m. Thus, the nodes may belong to the same (j = i) or
different (j < i) generation. We describe the key establishment phase of the ith
period (see Figure 3).

Both nodes will possess, among others, the ith generation key or an instance
of that key: If j = i, then Kj = Ki and both nodes will possess the key Ki.
Otherwise, if j < i, the node of the preceding generation A(j) will not possess
the key Ki of the ith generation. Instead, it will have already been pre-deployed
with the instance Ki(IDA) of the ith generation key Ki.

11

A (j) B (i)

],[
,,

BBK

BB

ICNMAC
ICN

],,[

),(,

)(BAAIDK

AkA

NrICMAC

rEIC
AB

Ai

],[

),(

BAK

Bk

rrMAC

rE

AB

AB

],[
,

BK rACKMAC
ACK

AB

)(),...,(
)(

,,,

1 BmBi

i

CABB

IDKIDK
ijK

PQICq

)(),...,(
)()(OR)(

,,,

1 AmAi

Aii

CAAA

IDKIDK
ijIDKijK

PQICq

 1. Choose RN B

 2. Verify MAC

 3. Choose RrA

 4. Compute:

)(

][)(

AABk

BIDKAB

rE

IDfk
Ai

 5. Compute:][)(AKAi IDfIDK
i

 6. Compute:][)(BIDKAB IDfk
Ai

 7. Decrypt:)(AABk rE

 8. Verify MAC

 9. Choose RrB

 10.Compute)(BABk
rE

 11.Compute 12.Decrypt)(BABk
rE)(AA IChe

),(
,

SharedInfo

SharedInfo

ABAB

BA

ABAB

CAAAA

ZkdfK
rr

QqZ
QeGQ

 13.Compute)(BB IChe

),(
,

SharedInfo

SharedInfo

ABAB

BA

BAAB

CABBB

ZkdfK
rr

QqZ
QeGQ

 14.Verify],[BAK rrMAC
AB 16.Verify],[BAK rrMAC

AB

 15.Delete ABABBA Zkrr ,,, 17.Delete ABABBA Zkrr ,,,

(at the end of the ith period)
 Delete)(AND/OR Aii IDKK

(at the end of the ith period)
 Delete)(AND Aii IDKK

Figure 3: Key establishment phase of the hybrid protocol

Step 1. The node B(i) initiates key establishment, by choosing a random nonce
NB and broadcasting this along with its Implicit Certificate ICB . For the initial
authentication of the key establishment, the node B also broadcasts a Message
Authentication Code (MAC) of the above values, generated with the initial au-

12

thentication key K.

Steps 2-3. The neighboring node A receives the MAC and verifies it. If the
verification succeeds, it chooses a random number rA, which will be used in the
randomization of the ECDH key exchange.

Step 4. In order to protect the random value from eavesdroppers, the node A
will generate a temporary key k̄AB and encrypt rA with that key. The temporary
key k̄AB is generated as follows. If both nodes belong to the same generation
(j = i) then both nodes possess the generation key Ki. In that case, both nodes
can generate the key Ki(IDA). If A is a node of a previous generation (j < i),
then the node A(j) will have been pre-deployed with the key Ki(IDA). In both
cases, from the key Ki(IDA), the node A can compute the temporary key as
k̄AB = fKi(IDA)[IDB]. Then, the node A sends the encryption Ek̄AB

(rA) to B,
along with its Implicit Certificate ICA and a MAC on ICA, rA, NB generated
with the key Ki(IDA).

Steps 5-8. On receiving this message, the node B computes the key Ki(IDA),
by using its generation key Ki. Then, B uses Ki(IDA) to compute the tem-
porary key k̄AB, and decrypts Ek̄AB

(rA) to obtain rA. Finally, B verifies the
received MAC before proceeding to the next step.

Steps 9-10. The node B also chooses a random value rB that will be used in
the pairwise key establishment and encrypts it with the temporary key k̄AB .

Step 11. At this time, the node B will use the received Implicit Certificate ICA

and the public key QCA of the CA, in order to compute the public key of node
A as QA = GA + eA × QCA. Observe that at this point B cannot yet establish
that QA is authentic: as soon as A proves knowledge of qA, the node B will have
implicit [33] assurance that it is talking to A and that all information included
in the certificate is genuine (i.e. signed by the CA). The node B computes
the static pair key ZAB = qB × QA. The final pairwise key KAB is computed
by applying a key derivation function kdf over ZAB and SharedInfo, where2

SharedInfo = rA, rB . Thus, KAB = kdf(ZAB, SharedInfo). The function
kdf is implemented through an one-way cryptographic hash function, such as
SHA-1. Then, the node B computes a MAC on rA, rB with the pairwise key
KAB and sends Ek̄AB

(rB), MACKAB [rA, rB] to the node A. The MAC will
provide key confirmation to node A, since it will prove that the corresponding
secret key qB was used.

Steps 12-13. The node A decrypts Ek̄AB
(rB) and obtains rB. Then the node

A will use the Implicit Certificate ICB and the public key QCA, in order to
compute the public key of node B as QB = GB + eB × QCA. Finally, the node

2In standard ECDH [31], SharedInfo is an optional string including some mutually known
private information (specified as suppPrivInfo).

13

A computes the static pair key ZAB = qA × QB. The pairwise key is again
computed as KAB = kdf(ZAB, SharedInfo), where SharedInfo = rA, rB .

Steps 14-16. Now the node A will verify the received MAC in order to confirm
that the appropriate secret key of node B was used in the computation of KAB.
At this point the node A is assured about the authenticity of QB. In order to
provide key confirmation regarding its own secret key qA, the node A will also
compute a MAC with the key KAB and send it to node B.

Steps 15-17. After the MAC verification, both nodes will delete the random
values rA, rB , the temporary key k̄AB and the static key ZAB. The nodes will
then use the pairwise key KAB for the actual communication. Note that from
the key KAB the two nodes can derive two different keys, one for encryption
and one for authentication [31].

At the end of the ith bootstrapping phase and after the nodes have performed a
key establishment with each of their neighbors, they will delete the generation
key Ki and/or the keys Ki(IDA), Ki(IDB) they possess. In the next boot-
strapping phase the node A (respectively B) will use its secret static key qA

(resp. qB) as well as its instance of the next generation’s key Ki+1(IDA) (resp.
Ki+1(IDB)) in order to participate in the bootstrapping phase with the nodes
of the generation i + 1.

5.2 The fully asymmetric protocol

As described earlier, the fully asymmetric protocol is a modified version of the
hybrid protocol. Thus, we describe the differences between the hybrid and the
fully asymmetric. The notation used is essentially the same as in the hybrid
protocol.

5.2.1 The key pre-deployment phase of the fully asymmetric proto-
col

In the fully asymmetric protocol, there are no generation-wide symmetric keys
K1, K2, ..., Km. Only the initial network-wide symmetric key K is used. Instead
of the generation-wide symmetric keys, in this protocol each node X(i) uses
multiple independent EC key pairs, one EC key pair for each key bootstrapping
period. The CA pre-deploys each node X(i) belonging to the ith generation
with (m − i + 1) asymmetric EC key pairs (qxk

, Qxk
), k = i, i + 1, ...m and

their corresponding Implicit Certificates. In each forthcoming key bootstrapping
phase k = i, i+ 1, ...m the node X(i) will use the corresponding kth key pair for
key establishment with any node Y (k), belonging to the kth node generation.
The rest of the key pre-deployment phase is the same as in the hybrid protocol
(see Figure 4).

14

CA

Static public key pair: PqQq CACACA,
Initial network authentication key: K

For each node X
1. Select:

iIDX , , where 1 mi

2. For each period i compute: mj

CAXXX

XX

XX

XX

XXX

qegq

eICh

MGIC

tIDiM

PgGg

jjj

jj

jj

j

jjj

)(

),(

),,(

,

3. Predeploy each node X (i) of generation i with:

(Secure channel)

),(),...,,(),,(,,,,,
2211 mmiiiiii XXXXXXCAXX ICqICqICqKPQICq

X (i)

Figure 4: The key pre-deployment phase of the fully asymmetric protocol

5.2.2 The key bootstrapping phase of the fully asymmetric protocol

In each bootstrapping phase, any pair of sensor nodes lying in each other’s range,
will use their pre-deployed EC keys which correspond to the current bootstrap-
ping period, in order to perform an authenticated pairwise key establishment, as
shown in Figure 5. As in the previous protocol, we describe a key establishment
between two nodes A(j), B(i), where 1 ≤ j ≤ i ≤ m (i.e. either both nodes
are of the same generation or the node A belongs to a previous node generation).

Steps 1-3. These steps involve the initiation of the key establishment and are
essentially the same as in the hybrid protocol.

Steps 4-6. The nodes B, A use the received Implicit Certificate ICAi , ICBi

respectively, the public key QCA of the CA, and their current secret EC keys
qBi , qAi respectively, in order to compute the static pair key QABi = qBi×QAi =
qAi×QBi . The final pairwise key KAB is computed by applying a key derivation
function kdf over QABi and NA, NB.

Steps 7-10. Both nodes use the derived key and exchange a MAC generated
with the derived key for key confirmation. If the confirmation succeeds, then
the nodes accept the derived key as their pairwise key and delete the nonces

15

A (j) B (i)

],[
,,

iBBK

BB

ICNMAC
ICN

],,[

,,,

i

i

ABAK

ABA

ICNNMAC

NN IC

],[
,

ABK

AB

NACKMAC
NACK

iAB

),(),...,,(

,,,,

11 mmii

ii

BBBB

CABB

ICqICq

KPQICq

),(),...,,(

,,,,

11 mmjj

jj

AAAA

CAAA

ICqICq

KPQICq

 1. Choose RN B

 2. Verify MAC

 3. Choose RN A

 4. Verify MAC

 6.Compute)(
ii BB IChe 5.Compute)(

ii AA IChe

),,(BAABAB

BAAB

CABBB

NNQkdfK

QqQ

QeGQ

ii

iii

iii

),,(BAABAB

ABAB

CAAAA

NNQkdfK

QqQ

QeGQ

ii

iii

iii

 7. Verify MAC

],[
,

BAK

BA

NACKMAC
NACK

iAB

 8. Verify MAC

 9. Delete BA NN , 10. Delete BA NN ,

(at the end of the ith period)
 Delete

ii BB ICq ,
(at the end of the ith period)
 Delete

ii AA ICq ,

Figure 5: The key bootstrapping phase of the fully asymmetric protocol

NA, NB.
At the end of the ith bootstrapping phase and after the nodes have per-

formed the required key establishments, the nodes A and B will delete their
ith EC keys and certificates (qAi , ICAi), and (qBi , ICBi) respectively. For key
freshness in subsequent periods, the nodes may periodically update the pairwise
key KABi using an one-way hash function.

Remark. Consider two nodes which are not able to communicate during the
i’th bootstrapping phase (e.g. due to a weak signal, or a node being busy).

16

In the proposed protocol they will be able to establish session keys in a future
bootstrapping phase by using the corresponding public key pair. This is not
possible in the hybrid protocol where all nodes deleted their generation-wide
keys at the end of each bootstrapping phase.

6 Security of the proposed protocols

6.1 General

The aforementioned protocols contain a four-pass challenge-response mecha-
nism for authenticated key agreement with explicit key confirmation. They
combine standard ECDH key agreement [31] and implicit certificates [33] for
mutual authentication. In the hybrid protocol the nodes also share some a pri-
ori secret information. The authenticity of the implicit certificates is based on
EC-Schnorr [30] signatures, which are provably secure under the random oracle
model given that the discrete logarithm problem over a subgroup < G > is un-
tractable [3]. Both protocols make use of random nonces for message freshness,
symmetric encryption for data confidentiality and MACs for data integrity. We
assume that the underlying primitives are secure.

6.2 Secure key generation

By using a private offline interface between each sensor node and the CA, during
pre-deployment phase, both active and passive attacks against the key gener-
ation process (such as unknown key share attacks and small subgroup attacks
[20]) are thwarted, provided that the CA is honest and takes all reasonable
measures in the key generation process.

6.3 Known key security

Clearly, if a node’s keying material is revealed at any time, all its present and
future communication is revealed, given that the attacker is also an eavesdrop-
per. In the following we will examine whether the forward secrecy property is
maintained throughout the execution of the protocols.

Forward secrecy per node (The hybrid protocol). The computation of
a session key KAB is based on both the static ECDH key ZAB and the ran-
dom values rA, rB . At the end of a key bootstrapping phase, both nodes delete
the random values rA, rB , as well as the temporary encrypting keys Ki(IDA),
k̄AB which were used to exchange rA and rB. In addition, at the end of each
bootstrapping phase, newly arrived nodes belonging to any generation i, delete
their generation-wide key Ki. Consequently, the hybrid protocol protects past
communication of a compromised node A(i), as long as an attacker does not
have access to both the static EC private key qAi , and the generation-wide key
Ki.

17

An attack on the hybrid protocol. Consider an attacker, who also eavesdrops
on communication lines. The attacker succeeds in learning all generation-wide
keys, e.g. by compromising at least one newly arriving node in each bootstrap-
ping phase. Then, for any node which is compromised, during the life of the
network, the attacker will be able to learn all node’s past and future communi-
cations with any other node of the network [23].

Forward secrecy per node (The fully asymmetric protocol). The deriva-
tion of a session key KABi is based on the static EC keys qAi and qBi , and the
random values NA, NB. Since NA, NB are transported in the clear, they do not
add security to the protocol. However, the nodes A, B delete their EC keys
qAi , qBi respectively, at the end of the i’th bootstrapping phase and after they
have performed a key establishment with each of their neighbors. Recall that
in subsequent periods, the nodes will update the pairwise key KABi using an
one-way hash function. Thus, compromising a node at a given time does not
reveal past communications of the attacked node. This would require knowledge
of the particular EC keys used for any past session key.

Forward and backward secrecy per generation. Stealing all the keys of
a node does not compromise past or future communications of any other node
of the same or of a different generation. In both protocols, a session key for
each pair of nodes is a function of the private EC keys of the nodes. Thus, the
compromisation of a given node will not reveal past of future communication
keys of any other node of the network.

6.4 Security against impersonation attacks

Since compromise of a node cannot be prevented, an attacker who compromises
a node is able to impersonate this node and join in a communication with any
other node of the network. In the proposed protocols, the attacker can do so
only for the compromised node. However the communication between any other
non-compromised nodes of the network remains secure (as opposed to symmetric
key establishment protocols).

To prevent impersonation attacks both protocols make use of implicit certifi-
cates [33]. During a bootstrapping phase, the node A uses the implicit certificate
of B and the public key of the CA to reconstruct the public key QB of node B.
At the end of the bootstrapping phase, when B uses its private key qB for the
construction of the ECDH key KAB and returns a MAC created with KAB, the
node A will have implicit assurance that it is talking to B and that all informa-
tion included in the certificate is genuine (i.e. signed by the CA). Furthermore,
a compromised node cannot present itself as a node of an earlier or a future
generation. Each node’s generation is included in its implicit certificate. If fake
generation information j′ is injected in ICA for a corrupted node A(j), then the
node B will construct an incorrect public key Q′

A and key confirmation will fail.

Usefulness of a network-wide authenticator. In both the hybrid and

18

fully asymmetric protocols, every node is pre-deployed with a network-wide
authenticator K, in order to prevent trivial denial of service attacks from an
outsider who does not know or possess any correct credentials. Let assume,
for a moment, that the network-wide key K is not needed and that an outsider
initiates the key agreement protocols (e.g., playing the role of node B in Figure 3
and Figure 5). In the course of the attack, node A will detect the attack in
Step 14 of the hybrid scheme and in Step 6 of the fully asymmetric scheme
respectively, that is after performing the elliptic curve computations which are
computationally intensive compared to any symmetric operation. This was the
main reason why we adopted the solution of using the initial authenticator
K. Admittedly however, this protection layer will not deter an adversary who
captures any node of the network and learns the initial key K.

7 Performance evaluation

7.1 Computational complexity

In order to produce comparable results with related work, we use the metrics of
[16] regarding the costs of each cryptographic action. Their computations were
performed on Mitsubishi’s 16-bit single-chip microprocessors M16C with 10MHz
clock. The same metrics were used in the hybrid protocol of [18]. The costs per
action are shown in Figure 6. The cost of fixed-point scalar multiplication is
reduced, by having a pre-computed look-up table stored in the ROM area of each
sensor. A block cipher, such as AES is assumed for the construction of the keyed-
hash function. The keyed-hash function is used for the computation/verification
of MACs. The SHA-1 algorithm is used for the evaluation of hash values, for
random number generation and as the key derivation function kdf . The cost of
the [16] protocol is 760 msec per node per key establishment. This is reduced to
645 msec for the hybrid protocol and to 633 msec for the asymmetric protocol,
an improvement of 15-17%.

7.2 Communication complexity

The proposed protocols require a total of 4 message exchanges for each key
establishment, including the protocol initiation, exchange of MACs and key
confirmation. Assuming that the node ID is 64 bits, the generation ID and the
expiration time are 8 bits, the Elliptic Curve modulus is 160 bits, the cipher-
blocks and MACs are 128 bits, and the random nonces are 64 bits, then the
communication cost of the protocol hybrid protocol is 186 bytes, while the cost
of the asymmetric protocol is 180 bytes, equivalent with the cost of the [16]
protocol.

7.3 Key storage requirements

Assuming that the nodes are pre-deployed with keys that allow communication
with nodes of k generations (including their own generation), the total storage

19

Number of Actions Per Node

Hybrid Protocol Asymmetric Protocol
Cryptographic
Action

Cost/Action
(msec) Node A Node B Node A Node B

Scalar
multiplication
(random point)

480 1 1 1 1

Scalar
multiplication
(fixed point)

130 1 1 1 1

EC addition 3 1 1 1 1

Symmetric
encryption /
decryption

3 2 2 - -

Keyed hash
function 3 5 6 4 4

Hash function
evaluation 2 2 2 2 2

Random number
generation 2 1 2 1 1

Total cost per
node 640 645 631 631

Figure 6: Computational costs per node

requirements during key pre-deployment are 1032+(k×128) bits for the hybrid
protocol and 384 + k × 400 bits for the asymmetric protocol.

 Key pre-deployment storage costs per node
 for k node generations (bits)

Compared protocols k = 1 k = 2 k = 3 k = 4 k = 5 k = 10
he hybrid protocol]

1032 + (k 128) bits
1160 1288 1416 1544 1672 2312

The asymmetric protocol
448 + (k 456) bits

904 1360 1816 2272 2728 5008

Table 1: Storage per node for k generations

As shown in table 1 the key pre-deployment storage costs allow for a reason-
able number k of node generations. Note that although for k ≤ 2 both protocols
have almost equal storage costs, for k > 2 the hybrid protocols scales better. For
k = 10 node generations, the asymmetric protocol has almost double key pre-
deployment storage costs. However, the storage requirements of both protocols
are tolerable for applications requiring a limited number of node generations.
For example, for k = 5 node generations, the key storage costs are 2384 bits or

20

298 bytes.
This cost includes,the private EC keys of the sensor, the public key of the

CA, the base point P and the symmetric keys. Note that after each key estab-
lishment phase, the sensor node will delete the EC keying material used in this
phase. This helps in maintaining an almost constant key space regardless of the
generation of pairwise keys.

8 Simulation results

In order to measure the efficiency of the proposed key establishment protocols
under various node configurations, we have used the wireless libraries of the
ns-2 (Network Simulator 2) [26]. For comparison reasons, we also simulate the
hybrid protocol of Huang et al [16] under the same configurations, since this
is the only existing hybrid protocol in the current literature for WSNs. In all
cases examined, we have used the following assumptions:

At the physical layer, wireless communication between the nodes is assumed,
as implemented in the ns-2 distribution. In the MAC layer, the IEEE 802.11
protocol is used, following the ns-2 distribution implementation. Routing is per-
formed by the DSDV (Destination Sequenced Distance Vector) routing protocol.
Finally, the UDP protocol is used as the transport agent.

8.1 Simulation setup and results

The simulated network consists of static nodes placed on a regular grid arrange-
ment, with 30m vertices. The expected number of neighbors for each node is
varying with each experiment, although a maximum number of 8 neighbors is
set for every node. The propagation range is 50m by using the TwoRayGround
model.

The key exchange protocols are coded as custom applications on the top
of the ns-2 layered structure. This approach enables the accurate and realistic
simulation of the key-exchange handshake mechanism. The application code
functionality is as close as possible to a real implementation, with key establish-
ment messages queued in finite buffers. The usage of queues permits the partial
overlapping of sessions. This means that while waiting for a particular response,
a node can process another key-exchange request. In order to speed up the ns-2
simulation, the actual cryptographic computations are not performed. Instead,
we have pre-computed the delays of the uninterruptible work blocks of the pro-
tocols, using the computational costs presented in [16]. These delays are used
for keeping busy a simulated node for the exact amount of time its handshake
state dictates. During this period no other operation is possible, as in a real-life
situation.

The simulation scenarios we have used can be divided into two categories:
according to the first category, one or more key-server nodes are intermixed
with ordinary nodes. The latter try to establish a key with one key-server in
reach. In the second group of scenarios, one or more nodes exchange key pairs

21

with all neighbors in reach. All scenario cases, accompanied with the relevant
simulation results are presented in the following sections.

8.2 Key-server scenarios

Average Key-Exchange Duration (s)

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8
number of requesting nodes

d
u

ra
ti

o
n

 (
s

e
c

o
n

d
s

)

Hybrid

Asymmetric

Huang

Figure 7: Average Key Exchange Duration

In the first scenario in this category, a key-server node is located between
a varying number of requesting nodes (1 to 8). These nodes exchange keys
with the server concurrently, generating overlapping key-establishment sessions
on the server node. As shown in Figure 7, the duration of key-establishment
sessions increases as the number of competing requestor nodes increases. The
Asymmetric and Hybrid protocol graphs are nearly identical (only 1% in differ-
ence), but the Huang protocol, which is computationally more expensive and
exchanges more messages, is almost 100% slower in every case. In the second
scenario of the key-server category, a regular grid of 100 nodes is simulated for
3 different cases (A, B, C in Figure 8). In each case, a number of key-servers are
interspersed within requesting nodes in a manner that allows for accordingly 1,
2 or 4 possible selections of a key-server. The first response to a key request
establishes the requestor/key-server pair and all other server offers are rejected
by the requesting node. As a key-server is busy with the first request it receives,
without responding to other request for at least 485ms (Huang et al protocol),
the distribution of key-server selection by requestors is implicitly load-balanced.

On the other hand, the work of a key-server in the same period (654ms in
Hybrid, 625ms in Asymmetric and 485ms in Huang et al) is totally wasted
when a requestor selects another key-server to handshake. This is obvious from
the graph in Figure 8, where the speedup between the case A and the cases B
and C is always less than 18% (Hybrid, Asymmetric) or 36% (Huang et al),
while at the same time, key-servers in cases B and C perform from 50% to 75%
less exchanges than in case A. From this point of view, the Huang et al protocol
has an advantage over the other protocols.

22

Average Key Exchange Duration (s)

0

1

2

3

4

5

6

7

8

9

10

A B C
Setups

d
u

ra
ti

o
n

 (
s
e
c
o

n
d

s
)

Hybrid

Asymmetric

Huang

Figure 8: Average Key Exchange Duration

8.3 Pairwise exchange scenarios

In the simplest scenario of this category, a fresh node exchanges keys with all its
neighbors. The number of neighbors varies between 1 to 8, causing overlapped
and competing key-exchange sessions on requesting node.

Average Key-Exchange Completion Time (s)

0

1

2

3

4

5

6

7

8

2 4 8
number of exchanges

d
u

ra
ti

o
n

 (
s

e
c

o
n

d
s

)

Hybrid

Asymmetric

Huang

Figure 9: Average Key Exchange Completion Times

In Figure 9 the total key-exchange completion time is shown. Completion
time increases as the number of concurrent sessions increases, but due to the
possibility of overlapping the effect is less pronounced, especially in the case
of the Huang protocol. According to the next scenario, a number of nodes
exchange keys concurrently, each one with all its neighbors. Nodes are arranged
in square grids and can have from 1 to maximum 8 neighbors. As the number
of neighbors remains constant for the larger grids, this fact is reflected to the
key-exchange completion times in Figure 10 after the 16 node (4x4) setup.

The slight increase in completion time observed in 32 and 64 node setups
is caused by the delay of message routing in the system. As in previous con-

23

Average Key-Exchange Completion Time (s)

0

1

2

3

4

5

6

7

8

9

2 4 16 32 64

number of nodes in setup

d
u

ra
ti

o
n

 (
s

e
c

o
n

d
s

)

Hybrid

Asymmetric

Huang

Figure 10: Average Key Exchange Completion Times

figurations, the Hybrid and Asymmetric protocols are 1.6 to 2.5 times faster
than the Huang et al protocol, a difference however that tends to be lower when
key-exchange sessions can be overlapped on a node.

9 Conclusion

In this paper we examine existing key establishment protocols for sensor net-
works and propose design and efficiency goals for Multi-Phase Distributed Sen-
sor Networks (MPDSNs), where groups of sensors (i.e. generations) can join
the network in future time periods and establish security relations with their
team-mates and/or with older nodes of the network. We also propose a generic
scheme for asymmetric key establishment in MPDSNs that fulfills our design
goals. Finally, we examine, in both security and efficiency terms, two key estab-
lishment protocols for a MPDSN that make use of asymmetric cryptography, a
hybrid and a fully asymmetric protocol [18, 23].

The hybrid protocol combines Elliptic Curve Diffie-Hellmann and Implicit
Certificates with pre-deployed symmetric keys. The fully asymmetric protocol
is a modified version of the hybrid, where no symmetric keys are pre-deployed
to the nodes. Instead, each node is pre-deployed with multiple EC key pairs,
one for each of the expected node generations.

To eliminate the costs of key generation for the sensor nodes, we use an off-
line trusted Certification Authority CA, which is responsible to generate and
pre-deploy the keys in a secure way. The authenticity of the EC keys of sensor
nodes is based on Implicit Certificates, which are signed by the CA with EC-
Schnorr signatures. Knowledge of the secret EC keys is implicitly confirmed
during the key establishment.

The protocols are more secure to known-key security attacks than symmetric-
key based protocols such as [35, 12], since they do not assume protection of the
nodes during the key bootstrapping periods and are less vulnerable to several
known weaknesses of symmetric authentication schemes. The proposed proto-

24

cols also improve the security of the existing hybrid protocol of [16], since they
support multiphase node deployment and do not require the existence of fully
functional devices.

The simulation results of the proposed protocols show that they have almost
equal key exchange costs. Moreover, they have better performance in compar-
ison with the existing hybrid protocol of [16], both in key-server and pairwise
key exchange scenarios. Our results indicate that although the proposed proto-
cols are still heavier than symmetric ones, their costs are affordable for highly
sensitive applications that require advanced security protection.

References

[1] S. Basagni, K. Herrin, E. Rosti, and D. Bruschi, Secure pebblenets, Proceedings
of the 2nd ACM International Symposium on Mobile Ad Hoc Networking and
Computing, ACM Press, 2001, pp. 156–163.

[2] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung,
Perfectly secure key distribution for dynamic conferences, Proceedings of the Ad-
vances in Cryptology - Crypto 92, Lecture Notes in Computer Science (LNCS),
vol. 740, Springer-Verlag, 1992, pp. 471–486.

[3] D. Brown, R. Gallant, and S. Vanstone, Provably secure implicit certificate proto-
cols, Proceedings of the 5th International Conference on Financial Cryptography,
LNCS, vol. 2339, Springer-Verlag, 2002, pp. 156–165.

[4] S. Camtepe and B. Yener, Key distribution mechanisms for wireless sensor net-
works:a survey, Tech. Report TR-05-07, Rensselaer Polytechnic Institute, 2005.

[5] D. Carman, P. Kruus, and B. Matt, Constraints and approaches for distributed
sensor network security, Tech. Report TR 00-010, NAI Laboratories, 2000.

[6] H. Chan and A. Perrig, Security and privacy in sensor networks, IEEE Computer
36 (2003), no. 10, 103–105.

[7] H. Chan, A. Perrig, and D. Song, Random key predistribution protocols for sensor
networks, Proceedings of the IEEE Symposium on security and privacy (Berkeley,
California), IEEE Press, May 2003, pp. 197–213.

[8] Crossbow, Mica2 wireless measurement system datasheet, Available at:
http://www.xbow.com/Products/Product pdf files/Wireless pdf/MICA2
Datasheet.pdf, 2005.

[9] D. Dolev and A.C. Yao, On the security of public key protocols, IEEE Trans. Inf.
Theory 29 (1983), 198–208.

[10] J. R. Douceur, The sybil attack, Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS 02) (Cambridge, MA (USA)), March 2002, pp. 251–
260.

[11] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney, A key management
scheme for wireless sensor networks using deployment knowledge, Proceedings
of the IEEE INFOCOM 04 (Los Alamitos, CA), March 2004.

[12] B. Dutertre, S. Cheung, and J. Levy, Lightweight key management in wireless
sensor networks by leveraging initial trust, Tech. Report SRI-SDL-04-02, SDL,
2004.

25

[13] L. Eschenauer and V. D. Gligor, A key-management protocol for distributed sensor
networks, Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, ACM Press, 2002, pp. 41–47.

[14] G. Gaubatz, J. P. Kaps, and B. Sunar, Public key cryptography in sensor networks
-revisited, Proceedings of the 1st European Workshop on Security in Ad-Hoc and
Sensor Networks (ESAS ’04), 2004.

[15] C. Gunther, An identity-based key-exchange protocol, Proceedings of the Advances
in Cryptology – Eurocrypt ’89, Lecture Notes in Computer Science (LNCS), vol.
434, Springer-Verlag, 1990, pp. 29–37.

[16] Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and J. Zhang, Fast authenticated key
establishment protocols for self-organizing sensor networks, Proceedings of the 2nd
ACM International Conference on Wireless Sensor Networks and Applications,
ACM Press, 2003, pp. 141–150.

[17] K. Jamshaid and L. Schwiebert, SEKEN (secure and efficient key exchange for
sensor networks), Proceedings of the 23rd IEEE International Performance, Com-
puting, and Communications Conference (IPCCC), 2004.

[18] P. Kotzanikolaou, E. Magkos, C. Douligeris, and V. Chrissikopoulos, Hybrid key
establishment for multiphase self-organized sensor networks, Proceedings of the
IEEE International Symposium on a World of Wireless, Mobile and Multimedia
Networks WoWMoM ’05, IEEE Press, 2005, pp. 581–587.

[19] H. Krawczyk, Hmqv: A high-performance secure diffe-hellman protocol, Proceed-
ings of the Advances in Cryptology - Crypto 2005, Lecture Notes in Computer
Science (LNCS), vol. 3621, Springer-Verlag, 2005, pp. 546–566.

[20] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, An efficient protocol for
authenticated key agreement, Designs, Codes and Cryptography 28 (2003), no. 2,
119–134.

[21] L. Law, A. Menezes, M. Qu, J. Solinas, and S.A. Vanstone, An efficient protocol
for authenticated key agreement, Technical Report CORR 98-05, Department of
C & O, University of Waterloo, 1998.

[22] D. Liu, P. Ning, and R. Li, Establishing pairwise keys in distributed sensor net-
works, ACM Transactions on Information and System Security 8 (2005), no. 1,
41–77.

[23] E. Magkos, P. Kotzanikolaou, M. Stefanidakis, and D. Vergados, An asymmetric
key establishment protocol for multiphase self-organized sensor networks, Proceed-
ings of the 12th European Wireless Conference (EW ’06), March 2006.

[24] D. Malan, M. Welsh, and M. Smith, A public-key infrastructure for key distribu-
tion in tinyos based on elliptic curve cryptography, Proceedings of the 1st IEEE
International Conference on Sensor and Ad hoc Communications and Networks
(Santa Clara, California), IEEE Press, October 2004.

[25] A. Menezes, M. Qu, and S. Vanstone, Key agreement and the need for authenti-
cation, PKS ’95 (Toronto, Canada), November 1995.

[26] NS-2, The network simulator ns-2, Cornell University, Available at:
http://www.isi.edu/nsnam/ns/, 2005.

[27] L.B. Oliveira, H. C. Wong, and A. A. F. Loureiro, LHA-SP: Secure protocols for
hierarchical wireless sensor networks, Proceedings of the 9th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM’05), 2005, pp. 31–44.

26

[28] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D. E. Culler, SPINS: secu-
rity protocols for sensor networks, Proceedings of the 7th Annual International
Conference on Mobile Computing and Networking (MobiCom ’01), July 2001,
pp. 189–199.

[29] S. Schmidt, H. Krahn, S. Fischer, and D. Watjen, A security architecture for
mobile wireless sensor networks, Proceedings of the 1st European Workshop on
Security in Ad-Hoc andSensor Networks (ESAS ’04) (Heidelberg, Germany), vol.
3313, August 2004.

[30] C. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology
4 (1991), 161–174.

[31] SECG, Standards for efficient cryptography group. SEC 1: Elliptic curve cryptog-
raphy, Available at: http://www.secg.org/download/aid-385/sec1 final.pdf, 2005.

[32] S. Slijepcevic, M. Potkonjak, V. Tsiatsis, S. Zimbeck, and M. B. Srivastava, On
communication security in wireless ad-hoc sensor networks, Master’s thesis, Pro-
ceedings of the 11th IEEE International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE’02), 2002, pp. 139–144.

[33] R. Struik and G. Rasor, Mandatory ecc security algorithm suite, Avail-
able at: http://grouper.ieee.org/groups/802/15/pub/2002/May02/02200r1P802-
15 TG3-Mandatory-ECC-Security-Algorithm-Suite.pdf, 2002.

[34] A.D. Wood and J.A. Stankovic, Denial of service in sensor networks, IEEE Com-
puters 35 (2002), 54–62.

[35] S. Zhu, S. Setia, and S. Jajodia, Leap: efficient security mechanisms for large-
scale distributed sensor networks, Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS ’03) (Washington D.C.), October
2003, pp. 62–72.

27

