
STRONG FORWARD SECURITY

Mike Burmester�

Department of Computer Science, Florida State University

214 Love Building, Tallahassee, Florida 32306, USA

burmester@cs.fsu.edu

Vassilios Chrissikopoulos

Department of Archiving and Library Studies, Ionian University

Corfu, 49100, GREECE

vchris@ionio.gr

Panayiotis Kotzanikolaou

Department of Informatics, University of Piraeus

80 Karaoli & Dimitriou, 185 34, Piraeus, GREECE

pkotzani@unipi.gr

Emmanouil Magkos�

Department of Informatics, University of Piraeus

80 Karaoli & Dimitriou, 185 34, Piraeus, GREECE

emagos@unipi.gr

Abstract Forward security has been proposed as a method to minimize the con-

sequences of key exposure. In this paper we analyze this method and

consider a vulnerability, which is due to the fact that the exposure may

not have been detected. All forward secure cryptosystems proposed so

far are vulnerable during the period between key exposure and its de-

tection. We consider the notion of strong forward security in which

cryptographically processed data is protected not only for the periods

prior to key exposure but also after key exposure, and present two

applications with this novel property: a basic public key cryptosystem

and an ElGamal-based key escrow scheme.

Keywords: Forward security, key update, intrusion detection

�Research supported by the Secretariat of Research and Technology of Greece.

1

2

1. INTRODUCTION

A major security concern in every cryptosystem is the protection of
secret keys from exposure. If the adversary appropriates the secret keys
of a user in an encryption scheme, then the adversary can decrypt all
ciphertexts intended for that user and con�dentiality is lost. For a sig-
nature scheme, the adversary can masquerade as the legitimate user.
The problem of key exposure is critical in open environments such

as the Internet, where every computer node is a potential victim of
hackers. Thus, there is a need to adopt mechanisms that minimize the
consequences of key exposure. So far, these mechanisms generally rely
on secret distributed computation [9, 14, 15, 17, 22, 29], periodical key
updating and key revocation [2, 5, 11, 20, 23, 25, 27].
Gunther [20] was the �rst to propose an encryption key updating

mechanism that protects the con�dentiality of all encrypted messages
prior to key exposure. With this mechanism all encrypted material is
protected from key exposure after the keys are updated. This property
was called forward secrecy. With forward secrecy, disclosure of long-
term secret keying material does not compromise the secrecy of earlier
encrypted material [11, 20].
A solution that establishes forward secrecy in the context of real-

time multicasting over large dynamic groups was proposed by McGrew
and Sherman in [27]. Burmester, Desmedt and Seberry [5] proposed
an escrow system with forward secrecy. There are also solutions that
address the key exposure problem for digital signatures. Herzberg et

al [22] consider threshold signature schemes (see also [9]) in which the
users update their shares proactively. These schemes o�er forward secu-
rity, however the distribution of shares and the distributed computation
required to compute signatures make them rather ineÆcient (cf. the
discussion in [2]). Bellare and Miner [2] proposed eÆcient digital signa-
tures with forward security, but their security can only be proven in the
Random Oracle Model [3]. Recently, Krawczyk [25] proposed a solution
that can be used with any signature scheme. In this paper we shall
adopt the term forward security both for encryption and signatures.
There is an inherent weakness in forward security that follows from the

fact that the de�nition does not specify what happens after an intrusion,
when the secret information has been exposed to the adversary, and
until its detection, when the public key is revoked. During this period
the security of the system is compromised. For example, suppose that
the adversary (e.g. a hacker) has appropriated the secret keys of Alice
during the session te but the intrusion has not been detected (Fig. 1).
The adversary will be able to update the stolen keys in the same way as

3

 Exposure Exposure

 t t t t t 1 2 e e+1 d

 Forward security Vulnerable period Key revokation

 Present

 Undetected Key Detection of Key

Figure 1 Forward Security

Alice and then generate secret keys for the sessions te+1, . . . , td, until
the intrusion is detected. This means that cryptographically processed
data after key exposure is not protected. All forward secure schemes in
the literature [2, 5, 20, 25] are vulnerable during this period. They only
o�er protection for sessions prior to key exposure.

Organization. In this paper we analyze forward security and con-
sider a new threat in which the adversary appropriates all the secret
keying material of a user without being detected. In Section 2 we con-
sider the notion of strong forward security, in which cryptographically
processed data is protected not only during the periods prior to key ex-
posure but also during the periods after key exposure. In Section 3 we
show how strong forward security can be achieved with any public key
cryptosystem and in Section 4 we propose a strong forward secure key
escrow/recovery scheme which is based on the ElGamal cryptosystem.
We conclude in Section 5.

2. FROM FORWARD SECURITY TO
STRONG FORWARD SECURITY

Suppose that Alice uses a forward secure cryptosystem and that the
adversary has appropriated (all) her secret keying material during ses-
sion te { see Figure 1. The adversary will not be able to obtain the keys
for earlier sessions tj < te, but will be able to update the key of ses-
sion te in the same way as Alice, to get keys for sessions te+1; : : : , until
session td, when the intrusion is detected. With the encryption scheme
in [5], the updating is deterministic so the adversary will generate an
identical key to Alice's, and thus decrypt all ciphertexts intended for
Alice. A similar argument applies to the signature schemes in [2, 25]. In
this case the adversary can forge Alice's signatures. With the encryp-
tion scheme in [20], which uses randomized updating, the adversary will
generate a di�erent key. However the adversary can prove that this key

4

 Exposure Exposure

period

 t t t t t 1 2 e e+1 d

 Present

 Forward security Vulnerable Strong forward security Key revokation

 Undetected Key Detection of Key

Figure 2 Strong Forward Security

is \genuine", since the adversary has also appropriated the long term
authentication keys of Alice.
Regardless of whether the updating mechanism is deterministic or

randomized, all cryptographically processed data is at risk during the
period between key exposure and its detection. Protection from intru-
sions in which all the secret keying material of Alice is stolen can only
be achieved by using non-cryptographic means. However, with random-
ized key updating this task should be easier, because Alice's updated
key will be di�erent from the key generated by the intruder (with high
probability).

De�nition. A system is strongly forward secure if disclosure of secret
keying material does not compromise the security of the system for ses-
sions both prior to exposure (tj < te) and after exposure (tj > te) { see
Figure 2.

A practical but expensive solution. Strong forward security can
be achieved with any public key cryptosystem by using threshold cryp-
tography [9, 16, 17]. For this purpose the secret key is shared among
several entities, which jointly execute the cryptographic application. The
shares are then proactively updated [15, 23, 22]. Strong forward security
is clearly achieved, provided that the threshold is suÆciently large.
With such schemes each application (encryption or digital signature)

requires a distributed computation and therefore may be quite costly (as
noted in [2]). Furthermore, the distribution of shares may be costly.

Our solution. Our goal is to achieve strong forward security in a
practical and a�ordable way. The user must be able to certify new
session keys with minimum cost, without out-of-band authentication.
Furthermore, this should not involve costly distributed computations for
each application (encryption or signature). For this purpose we combine
randomized key updating with certi�cation.

5

If a hacker appropriates the secret keying material of a legitimate user
and then tries to certify an updated stolen key, then two valid public
keys corresponding to the same user will be submitted for certi�cation:
the legitimate key and an alias key. The intrusion will be detected and
thus the cryptographic security will only be compromised during the
session of the intrusion.

3. A BASIC SOLUTION FOR ANY PUBLIC
KEY CRYPTOSYSTEM

Based on our discussion above we can make any public key cryptosys-
tem strongly forward secure. First let us consider digital signatures.
Suppose that the public/secret key pair of Alice for session t, is

(PKA;t; SKA;t) and that Cert(IDA; PKA;t) is a certi�cate for it, issued
by the Certifying Authority CA, where IDA is a unique identi�er of
Alice. For the next session, Alice selects a random public/secret key
pair (PKA;t+1; SKA;t+1), and digitally signs it together with IDA, us-
ing her previous key: sigSKA;t

(IDA; PKA;t+1). Alice then sends this
together with her old certi�cate Cert(IDA; PKA;t) to the CA, which
veri�es Alice's signature using the old key PKA;t. If this is correct, the
CA sends Alice a new certi�cate Cert(IDA; PKA;t+1).
If an intruder appropriates (all) the secret keys of Alice during the

session t (and in particular SKA;t) and if the intruder submits an up-
dated public key to the CA for certi�cation, then two public keys will be
submitted, both on behalf of Alice. If this happens the CA will revoke
(all) the public keys of Alice.
A similar approach can be used for public key encryption. In this case

however Alice needs two pairs of public keys, one for encryption and the
other to authenticate her encryption key.
This basic scheme achieves strong forward security and is as secure

as the underlying cryptosystem. Furthermore, it is very eÆcient. In
particular, the certi�cation of the public keys in each session does not
require out-of-band methods. In addition, the size of keys and of the
signatures does not expand as the keys are updated. However, we have
a linear expansion in the number of certi�cates.

Remark 1. Although the protection of strong forward security is ob-
vious in the case of encryption, one could argue that in the context of
digital signatures it does not o�er any additional protection to forward
security. Consider for example the case when Bob has appropriated Al-
ice's signing key. Then, even though Bob will not be able to update
the stolen key without being detected, he could indirectly bypass the

6

security of the system for future sessions. For example, he could sign
postdated checks on behalf of Alice.
However, there are cases when strong forward security makes sense in

the context of signatures. For example, when the lifetime of the signing
key also restricts the scope of the signed message. This would make
postdated checks (for later sessions) invalid.

Remark 2: \Imprisonment" attack. The proposed solution assumes
that the attacker and the legitimate user have access to a Certifying
Authority CA to update keys. This forces the attacker to \publish"
the fact that a key has been exposed. If the attacker can somehow
prevent the legitimate user from accessing the CA, then the attacker
can impersonate the user for as long as he can con�ne the user. There
seems to be no cryptographic way to handle such attacks.

4. AN ELGAMAL KEY ESCROW SCHEME
WITH STRONG FORWARD SECURITY

The solution proposed above is not satisfactory for key escrow because
the updated keys must be distributed among escrow agents (an excellent
survey of key escrow systems is given by Denning and Branstad in [8]).
The following scheme reduces the cost of key distribution and key up-
dating by having the escrow agents regulate the timing process for key
updating.
For simplicity, we describe a basic 2-out-of-2 key escrow scheme with

escrow agents EA1; EA2, in which the Law Enforcement Agency LEA
also acts as a Certifying Authority. The escrow agents and the LEA are
trusted to adhere to the protocol.
Each user, say Alice, during setup, chooses a long-term secret key

and shares this among the escrow agents in a veri�able way. Then, at
the beginning of each session t the escrow agents select a time-control
identi�er ht. This is broadcast by the LEA and will be used by all the
users of the system for key updating. In particular, Alice will update
her private key SKt�1 to SKt by using her long-term secret key, some
randomness and the time-control identi�er ht. After each updating,
Alice and the escrow agents delete all information that might be useful
to an adversary who may attempt to recover previous keys. Additionally,
Alice updates her public key to PKt, and proves to the LEA in zero-
knowledge [19] that this has been properly constructed. The LEA then
certi�es the updated public key PKt.
A hacker who succeeds in appropriating Alice's secret keying material

may attempt to update the stolen session key and to get the updated
key certi�ed by the LEA. However, Alice will also submit her updated

7

key for certi�cation. The two keys are di�erent (with overwhelming
probability). The LEA will notice that di�erent keys corresponding
to the same user are submitted for certi�cation, and thus detect the
intrusion and revoke all the public keys of Alice.

Background. We use an ElGamal encryption scheme [12]. Let r; q; p
be large primes with q = 2r + 1, p = 2q + 1, and let H be a subgroup
of Z�

q
of order r with generator h, and G be a subgroup of Z�

p
of order

q with generator g. For simplicity, and when there is no ambiguity, we
drop the modulus operators. Also, we write a 2R A to indicate that the
element a is chosen randomly with uniform distribution from the set A.
The DiÆe-Hellman [10] operator DH is de�ned by DH(ga; gb) = gab.

Given the numbers ga and gb, the problem of computing DH(ga; gb)
is called the DiÆe-Hellman problem. The problem of deciding whether
z = DH(ga; gb), for a given z 2 Zp, is called the Decision DiÆe-Hellman
DDH problem [10].

Setup. Alice chooses a long term private key xA 2R Z�

q
and computes

yA = gxA . Alice gives her long term public key PKA =< p; q; g; yA >

to the LEA, authenticates it by non-cryptographic (out-of-band) means,
and gets a certi�cate Cert(IDA; PKA). Then,

1 Alice chooses shares x1 2R Z�

q
and x2 = xA(x1)

�1. Alice gives the
shares x1, x2 privately to the escrow agents EA1, EA2, respec-
tively.

2 The escrow agents check that yA = DH(gx1 ; gx2). If not, Alice is
reported to the LEA.

Key updating (session t = 1; 2; : : :). Agents EA1; EA2 choose num-
bers r1;t, r2;t 2R Z�

r
respectively, and jointly construct hrt = hr1;tr2;t in a

secure way by using the DiÆe-Hellman key exchange protocol [10]. The
agents send hrt to the LEA which publishes it. This number identi�es
the session t, and is used by all the users of the system. It represents
the randomness of the escrow agents in the key updating procedure and
is the same for all users. The agents then discard the exponents r1;t�1

and r2;t�1 of the previous session (when t > 1). Then:

1 Alice chooses a number rA;t 2R Z�

r
, computes hrA;t and sends

this to the LEA. Alice also computes the DiÆe-Hellman key ht =
hrtrA;t .

2 Alice updates her secret key for session t to SKA;t = htxA. She
then computes yA;t = ghtxA , and sends to the LEA her public

8

session key PKA;t = < p; q; r; g; h; yA;t >. Alice then proves in zero

knowledge (see the Appendix) that yA;t = gDH(hrt ;h
rA;t)DL(gxA),

where DL(gxA) is the discrete logarithm of gxA . If the proof is
correct, the LEA certi�es the updated public key and issues Alice
with a certi�cate Cert(IDA; PKA;t). Then Alice discards rA;t and
the previous session key.

Getting an escrowed key. Assume that a court order has been issued
to decrypt all ciphertexts intended for Alice during session t. Then
the LEA will wiretap the communication of Alice. Let (gk;m(yA;t)

k)
be an ElGamal encryption of a message m sent to Alice during this
session. The LEA will send gk and hrA;t to the escrow agents. The agents
�rst compute the DiÆe-Hellman key ht = hrtrA;t , and then the factor
(yA;t)

k = (((gk)ht)x1)x2 . They send (yA;t)
k to the LEA for decryption.

Theorem 1 If the Decision DiÆe-Hellman problem is hard then the

proposed escrow scheme has strong forward security.

Proof. Suppose that there is a polynomial time algorithmA that breaks
the proposed escrow scheme. Let z; ha; hb 2R Z�

q
be an input for the

Decision DiÆe-Hellman problem. We shall use A to break the DDH
problem.
Choose at random a secret key xA 2R Z�

q and let yA = gxA be the
long-term public key. Next, prepare a history of ciphertext-message
pairs (c;m) for A, for earlier sessions j, by choosing at random k 2R Z�

q ,

m 2R Z�

p and rj; rA;j 2R Z�

r and take c = (gk;mgkxAh
rjrA;j

).

Give to A: xA; yA, and z, ha, hb instead of ht, h
rA;t , hrt , the public

(session) key yA;t = gzxA , a history of ciphertext-message pairs and the
\ciphertext": (gk;mgkzxA). Let the output of A be m0. If m0 = m then
the decision is that z = hab, else z 6= hab.

Remark 3. The interactive zero knowledge proof in Step 2 of the
key updating can be replaced by a signature, using the Fiat{Shamir
heuristic [13], which requires a hash function. However it should be
noted that if we use such signatures then the security of the scheme can
only be proven in the Random Oracle Model [3].

Remark 4. In Section 2 we considered a solution involving the distri-
bution of the secret keys via secret sharing in a proactive way. In our
protocol above we also distribute the keys and use an updating mecha-
nism similar to proactive mechanisms. However, our encryptions do not
require a distributed computation.

9

Remark 5. The escrow agents are safe repositories for the long-term
secret keys of all the users of the system. In our protocol the agents also
generate a random number hrt . This number is for a speci�c time period
and is the same for all the users of the system. In the next session a new
random number is chosen and the old one is discarded. Observe that
the addition or the removal of a user from the system does not a�ect the
functionality of the agents.

Remark 6. The ElGamal escrow scheme described above can easily
be modi�ed to get a Key Recovery scheme by replacing the LEA and
the escrow agents with a Data Recovery Agency and recovery agents
respectively. Observe that if the keys to be recovered encrypt archived
data, then there is no point in adopting a Key Recovery scheme with
forward secrecy, as observed in [1]. Consequently, the proposed scheme
can only be used to recover encrypted traÆc.

Generalizations

1 It is easy to see how to generalize this scheme to a t-out-of-l key
escrow scheme. Robustness can be achieved by using the approach
in [16, 17]. Furthermore, our scheme can be easily modi�ed to
prevent subliminal channel attacks, as described in [24].

2 It is well known that the ElGamal encryption scheme is not seman-
tically secure [18]. To extend our scheme to a semantically secure
scheme we can use the Cramer-Shoup extension of ElGamal [7].

5. CONCLUSION

Forward security protects cryptographically processed data prior to
key exposure. However in many applications it is diÆcult to detect in-
trusions. Indeed, hackers will not necessarily use the appropriated keys
until this is expedient or pro�table. It is therefore important to consider
mechanisms, which also protect cryptographically processed data after
an intrusion. Strong forward security o�ers such protection.

References

[1] H. Abelson, R. Anderson, S. Bellovin, J. Benaloh, M. Blaze, W.
DiÆe, J. Gilmore, P. Neumann, R. Rivest, J. Schiller, B. Schneier.
The Risks of Key Recovery, Key Escrow, Trusted Third Party & En-

cryption, Digital Issues, No. 3, 1998, pp. 1{18.

[2] M. Bellare, S. Miner. A Forward-Secure Digital Signature Scheme,
Advances in Cryptology | Crypto '99, Proceedings, Lecture Notes

10

in Computer Science, Vol. 1666, Springer 1999, pp. 197{207.

[3] M. Bellare, P. Rogaway. Random Oracles are Practical, 1st Annual
Conference on Computer and Communications Security, Proceed-
ings, ACM 1993, pp. 154{164.

[4] D. Boneh. The Decision DiÆe-Hellman Problem, 3rd Algorithmic
Number Theory Symposium, Proceedings, Lecture Notes in Com-
puter Science, Vol. 1423, Springer 1998, pp. 48{63.

[5] M. Burmester, Y. Desmedt, J. Seberry. Equitable Key Escrow with

Limited Time Span (or How to Enforce Time Expiration Crypto-

graphically, Advances in Cryptology | AsiaCrypt '98, Proceedings,
Lecture Notes in Computer Science Vol. 1514, Springer 1998, pp.
380{391.

[6] D. Chaum. Zero-Knowledge Undeniable Signatures, Advances in
Cryptology | Eurocrypt '90, Proceedings, Lecture Notes in Com-
puter Science, Vol. 473, Springer 1991, pp. 458{464.

[7] R. Cramer, V. Shoup. A Practical Public Key Cryptosystem Prov-

ably Secure against Adaptive Chosen Ciphertext Attack, Advances in
Cryptology | Crypto '98, Proceedings, Lecture Notes in Computer
Science, Vol. 1462, Springer 1998, pp. 13{25.

[8] D.E. Denning and D.K Branstad. A taxonomy of Key Escrow En-

cryption Systems, Communications of the ACM, Vol. 39(3), 1996,
pp. 24{40.

[9] Y. Desmedt, Y. Frankel. Threshold Cryptosystems, Advances in
Cryptology | Crypto '89, Proceedings, Lecture Notes in Computer
Science, Vol. 435, Springer 1989, pp. 307{315.

[10] W. DiÆe, M. Hellman. New Directions in Cryptography, IEEE
Transactions on Information Theory, Vol. 22(6), IEEE 1976, pp. 644{
654.

[11] W. DiÆe, P. Van Oorschot and M. Wiener. Authentication and

Authenticated Key Exchanges, Designs, Codes and Cryptography,
Vol. 2, 1992, pp. 107{125.

[12] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme

Based on Discrete Logarithms, IEEE Transactions on Information
Theory, Vol. 31, IEEE 1985, pp. 469{472.

[13] A. Fiat, A. Shamir. How to prove yourself: Practical Solutions to

Identi�cation and Signature Problems, Advances in Cryptology |
Crypto '86, Proceedings, Lecture Notes in Computer Science, Vol.
263, Springer 1986, pp. 186{194.

11

[14] Y. Frankel, P. Gemmel, P.D. MacKenzie, and M. Yung. Proactive
RSA, Advances in Cryptology | Crypto '97, Proceedings, Lecture
Notes in Computer Science, Vol. 1109, Springer 1997, pp. 440{454.

[15] Y. Frankel, P. Gemmell, P. D. MacKenzie and M. Yung. Optimal-
Resilience Proactive Public-Key Cryptosystems, 38th Annual Symp.
on Foundations of Computer Science, Proceedings, IEEE 1997, pp.
384{393.

[16] Y. Frankel, P. Gemmel, and M. Yung. Witness Based Cryptographic

Program Checking and Robust Function Sharing, 28th annual ACM
Symp. Theory of Computing, Proceedings, ACM 1996, pp. 499{508.

[17] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust and

EÆcient Sharing of RSA Functions, Advances in Cryptology |
Crypto '96, Proceedings, Lecture Notes in Computer Science, Vol.
1109, Springer 1996, pp. 157{172.

[18] S. Goldwasser, S. Micali. Probabilistic Encryption, Journal of Com-
puter and System Sciences, Vol. 28, 1984, pp. 270{299.

[19] S. Goldwasser, S. Micali, and C. Racko�. The Knowledge Com-

plexity of Interactive Proof Systems Proceedings of the 17th ACM
Symposium on the Theory of Computing STOC, ACM Press, Prov-
idence, Rhode Island, U.S.A., 1985, pp. 291{304.

[20] C. Gunther. An Identity-based Key-Exchange Protocol, Advances
in Cryptology | Eurocrypt '89, Proceedings, Lecture Notes in Com-
puter Science, Vol. 434, Springer 1989, pp. 29{37.

[21] S. Haber and W. Storenetta. How to Timestamp a Document, Ad-
vances in Cryptology | Crypto '90, Proceedings, Lecture Notes in
Computer Science, Vol. 537, Springer 1990.

[22] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, M. Yung.
Proactive Public Key and Signature Schemes, 4th Annual Confer-
ence on Computer and Communications Security, Proceedings, ACM
1997, pp. 100{110.

[23] A. Herzberg, S. Jarecki, S. Krawczyk, and M. Yung. Proactive Se-

cret Sharing, Advances in Cryptology | Crypto '95, Proceedings,
Lecture Notes in Computer Science, Vol. 963, Springer 1995, pp.
339{352.

[24] J. Kilian, T. Leighton. Fair Cryptosystems, Revisited, Advances in
Cryptology | Eurocrypt '95, Proceedings, Lecture Notes in Com-
puter Science, Vol. 963, Springer 1995, pp. 208{220.

[25] H. Krawczyk. Simple Forward-Secure Signatures For Any Signature
Scheme, Procceedings of the 7th ACM Conference on Computer and
Communications Security, ACM Press, 2000, pp. 108-115.

12

[26] U. Maurer, Y. Wolf. DiÆe-Hellman Oracles, Advances in Cryptol-
ogy | Crypto '96, Proceedings, Lecture Notes in Computer Science,
Vol. 1109, Springer 1996, pp. 268{282.

[27] D. McGrew, A. Sherman. Key Establishment in Large Dynamic

Groups, Manuscript, Submitted to IEEE Transactions on Software
Engineering.

[28] A. Menezes, P. Van Oorschot, S. Vanstone. Handbook of Applied

Cryptography , CRC Press, 1997.

[29] T. Rabin. A Simpli�ed Approach to Threshold and Proactive RSA,
Advances in Cryptology | Crypto '98, Proceedings, Lecture Notes
in Computer Science, Vol. 1462, Springer 1997, pp. 89{104.

[30] A. Shamir. How to Share a Secret, Communications of the ACM,
Vol. 22, ACM 1979, pp. 612{613.

Appendix A 13

Appendix

Let

L = f(p; q; r; g; ga ; hb; hc; z) j p; q; r primes; p = 2q + 1; q = 2r + 1;
g a generator of Z�

p
; h a generator of Z�

q
; a 2 Z�

q
; b; c 2 Z�

r
; and

z 2 Z�

p with z = gah
bc
mod pg:

An interactive zero-knowledge proof of membership
in L

Input: x = (p; q; r; g; ga; hb; hc; z)

Repeat ` times (` = �(log p)) :

1 The Prover chooses k 2R Z�

q , t 2R Z�

r , computes u = ka mod q,
v = c+ t mod r, and then sends to the Veri�er:

X = guh
bv

; Y = gu; Z = hv :

2 The Veri�er sends to the Prover a bit query e 2 f0; 1g.

3 The Prover sends to the Veri�er:

(u; v); if e = 0
(k; t); if e = 1.

Veri�cation: The Veri�er checks that:

when e = 0, X = gu(h
b)v ; Y = gu; Z = hv

when e = 1, X = zk(h
b)t ; Y = (ga)k; Z = hcht:

The Veri�er accepts (that x 2 L) if the veri�cation is satis�ed for all k
rounds.

Proof of correctness

Completeness: If x 2 L then the Veri�er will always accept.

Soundness: If the Veri�er accepts with non-negligible probability
(� 1=poly(log p)), then the Prover must answer correctly both queries
e = 0, e = 1 for some triple X;Y;Z. Therefore,

Z = hv = hcht) v = c+ t mod r

Y = gu = (ga)k) u = ka mod q

X = gu(h
b)v = gkah

b(c+t)
= zk(h

b)t) z = gah
bc
:

14

It follows that x 2 L.

Simulation (zero-knowledge):

when e = 0; choose random u, v and construct X, Y , Z as in Step 1;

when e = 1; choose random k, t and construct X = zk(h
b)t , Y = (ga)k,

and Z = hcht.

