
An Asymmetric Traceability Scheme for Copyright Protection 
Without Trust Assumptions 

 

Emmanouil Magkos1, Panayiotis Kotzanikolaou1, and Vassilios Chrissikopoulos1 

1 Department of Informatics, University of Pireaus, Greece 
{emagos, chris}@unipi.gr 

2 Information Security Group, Royal Holloway, University of London, UK 
mikeb@dcs.rhbnc.ac.uk 

 
Abstract. Traceability schemes (also known as traitor tracing schemes) have been proposed as a 
method to establish copyright protection of broadcast information. With asymmetric traceability, the 
merchant cannot frame an innocent user, while no user can abuse the system without being detected. 
We propose an asymmetric solution for traceability, based on a very efficient symmetric scheme [4]. 
We do not make any trust assumptions about the broadcasting center or other authorities. Furthermore, 
we establish anonymity protection for all honest users: the identity of a user is protected, until a 
“fingerprint” of that user is found on a pirate decoder. We make use of well-known cryptographic 
techniques, such as oblivious transfer, time-lock puzzles and blind signatures 
 
1. Introduction 
 
With the rapid development of new IT technologies and electronic commerce, intellectual 
property for digital content has been an important issue. Many watermarking and 
fingerprinting techniques, mostly based on classical steganography, have been proposed [1]. 
While digital fingerprints help the content owner to identify a copyright violator (i.e., a 
“pirate”), digital watermarks give the means to prosecute the pirate. Especially for broadcast 
information, such as pay-per-view TV, web broadcast of online stock quotes, online databases 
and CD-ROM distribution, fingerprinting techniques have been combined with cryptography 
to enhance identification of redistributors. In these traceability schemes (also known as 
traitor tracing schemes [2]), the data supplier broadcasts encrypted information, and only the 
authorized users are able to decrypt it, by using their unique decryption keys. If some 
unauthorized users (pirates) get some decryption keys from a group of one or more authorized 
users (traitors) then the pirate decoder contains secret information that allows the data 
supplier to identify at least one traitor. 
 Copyright protection of digital data comes in three flavors. In the symmetric case (e.g., 
[2, 3, 5, 6]), the merchant knows the fingerprint (e.g. marking codes or decryption keys) that 
is uniquely linked with the buyer. If the merchant finds an illegally redistributed version of 
the original data, there are no means to prove to the Court that the buyer is guilty, since it 
could have been the merchant himself that tried to incriminate the buyer. In the asymmetric 
case (e.g., [13, 14, 15]), only the buyer knows the data with the fingerprint. If the merchant 
later finds a redistributed version of the data, he can identify the buyer and prove this to the 
Court. The anonymous asymmetric case (e.g., [16]) comes as a complementary protection for 
the buyer: Users buy information anonymously, but they can be identified if they redistribute 
the information illegally. 
 Recently, Kurosawa and Desmedt proposed two symmetric traceability schemes [4], 
where each buyer has only one decryption key. These schemes are very efficient and provably 
secure. For each of the two basic symmetric schemes, they also presented an asymmetric 
version. However, asymmetry is based on the existence of some trusted entities, i.e. an arbiter 
or trusted agents. These entities have knowledge of the decryption keys of all the users of the 
system, but they are trusted not to frame any user. We believe that the trust granted to these 
entities is unacceptable: there should be a protocol, which, if executed between the 
broadcasting center and a user, would establish asymmetry without the involvement of a third 
party. This protocol should also be secure against a misbehaving center or/and a malicious 
user. 
 



Our Contribution. In this paper we turn the very efficient traceability scheme of Kurosawa-
Desmedt [4] into an asymmetric scheme, without assuming the involvement of a trusted 
entity. For this reason we make use of a cryptographic technique called oblivious transfer. In 
addition, we propose a special cut-and-choose technique that assures, with a non-negligible 
probability, the correctness of the private keys that are obliviously transferred to the users of 
the system. Our solution can directly be embedded in the key generation procedure of the KD 
scheme [4]. Furthermore, our solution offers extra anonymity protection for the buyer, i.e., the 
KD scheme is turned into an anonymous asymmetric scheme. In order to establish anonymity, 
we make use of cryptographic tools and techniques that are publicly known and have been 
proposed during the past years, namely time-lock puzzles and blind signatures. 
 
1.1 Related Bibliography 
 
The first traceability schemes in the literature are due to Fiat and Naor [2]. However, these 
schemes are very inefficient: every user personal key consists of )log( 2 nkO decryption keys 
and the data supplier has to broadcast )log( 4 nkO ciphertexts. Recently, Kurosawa and 
Desmedt proposed very efficient traceability schemes [4], the KD schemes. They first derived 
lower bounds and proposed an optimum one-time scheme that satisfies these bounds. More 
recently, Boneh and Franklin presented a traceability scheme [6], the BF scheme, which is 
provably secure and achieves full-traceability, i.e., there is a tracing algorithm that catches all 
traitors that participate in the construction of a pirate decoder. In addition, their scheme offers 
black-box traceability, i.e., the pirate decoder is not opened but only queried in order to 
identify the traitors. They also describe a linear attack against the KD tracing algorithm [4], 
where two or more traitors are able to construct a pirate decoder that cannot be traced back to 
them. This attack was later addressed by Kurosawa, Desmedt and Burmester [7]. The new 
tracing algorithm presented in [7], makes the KD scheme full-traceable and black-box 
traceable. In addition, the gap between the ciphertexts and the plaintexts in the BF scheme is 
greater than the lower bounds achieved in the KD scheme. As a result, and to the best of our 
knowledge, the most efficient traceability scheme in the literature is the KD optimum 
traceability scheme. 
 
The Asymmetric case. Pfitzmann [14] combined the Fiat-Naor symmetric scheme with a two 
party protocol [18] in order to turn it into an asymmetric scheme. Later, Pfitzmann and 
Waidner [15] got the same result by using another two party protocol [19] and secure 
cryptographic commitments [20]. However, their schemes are not efficient because the 
symmetric scheme of [2], on which they are based, is very inefficient. 
 
This paper is organized as follows. Section 2 describes the basic building blocks required for 
our asymmetric scheme. In Section 3, an anonymous asymmetric version of the KD scheme is 
presented. Section 4 concludes the paper. 
 
 
2. Building Blocks 
 
2.1 The Kurosawa-Desmedt one-time traceability scheme 
 
In [4], the data supplier T chooses a uniformly random polynomial 

k
k xaxaaxf +++= ..)( 10  over )(qGF as the encryption key Te , where q is a prime with 

,nq > for a set of n authorized users.  
Key Generation. T gives to each authorized user ui the personal decryption key 

,)(, >=< ifiei .,...,2,1 ni =  



Encryption: T encrypts a session key s, as: ).,..,,(),,..,( 1010 kk aaashhhh +==  Then, T 
broadcasts h to all users of the system. 
Decryption: From the header h and the decryption key ,ie each user ui decrypts h to compute 

s as: .)()..( 10 sifihihh k
k =−+++  

Tracing: When a pirate decoder is confiscated, the pirate key pe is exposed. If pe contains 

))(,( jfj for some user uj, then T decides that user uj is a traitor. 
 
2.2 Non-interactive Oblivious Transfer 
 
In [11], non-interactive oblivious transfer is described as follows: “Bob has two strings S0 and 
S1. As a function of these and Alice’s public key PA, he computes a message OT(S0, S1) and 
sends it to Alice. Using her secret key x, Alice can extract from OT(S0, S1) exactly one of the 
strings S0 and S1, Bob will not know which of the two Alice got”. We will now summarize the 
protocol, as presented in [11, Section 2.1]. 
Setup. Let p be a prime and g be a generator of .*

pZ  *
pZC ∈  is a globally known parameter 

of the system and is a number that it does not have discrete logarithm modulo p. Ways of 
finding such numbers are described in [11]. 
Key Generation. Alice chooses }2,..,0{ −∈ px at random and sets xga =0  and 

.)( 1
1

−= xgCa Her public key is (a0, a1) and his secret key is .x  Correctness of Alice’s 
public key is achieved by verifying that Caa =10 . 

Oblivious Transfer. Bob chooses }2,..,0{, 10 −∈ pyy at random and computes ,0
0

yg=β  

.1
1

yg=β  He also uses Alice’s public keys to compute 0
00
yαγ = and .1

11
yαγ =  Finally, he 

computes 000 γ⊕= Sr  and 111 γ⊕= Sr , and sends ),,,(),( 101010 rrSSOT ββ=  to Alice. 

On receiving 0β and ,1β Alice uses her secret key to compute .i
x

i γβ =  Finally, she 
computes .iii Sr =⊕γ  According to the Diffie-Hellman assumption [12], Alice will be able 
to produce 0γ or 1γ , but never both. So, Alice is finally left with exactly one-out-of-two 
secrets and Bob does not know which secret Alice has ended with. 
 
2.3 Time-lock Puzzles 
 
With time-lock puzzles [8], Alice can encrypt a message M so that Bob can decrypt it after a 
period of T seconds, with T be a real (not CPU) time period. There are several ways to 
implement time-lock Puzzles. In [8], the message is encrypted with an appropriately large 
symmetric key, which in turn is encrypted in such a way that Bob can decrypt it only by 
performing t=TS squarings sequentially, where S is the number of squarings per second that 
Bob can perform. The computational problem of performing these squarings (each time 
squaring the previous result) is not parallelizable in any way: having two processors is no 
better than having one 
 
2.4 Blind Signatures 
 
Blind Signatures [9,10] are the equivalent of signing carbon-paper-lined envelopes. A user 
seals a slip of a paper inside such an envelope, which is later signed on the outside. When the 
envelope is opened, the slip will bear the carbon image of the signature. In order to establish 
correctness in a blind signature protocol, a cut-and-choose technique can be used: Alice sends 
m blinded messages to Bob, then un-blinds any m-1 indicated by Bob. Bob signs the 
remaining message. There is a tradeoff between choosing a large m (strong correctness), and a 
small m (efficiency). 



 
 
3. An anonymous asymmetric traitor tracing scheme 
 
We present an asymmetric version of the KD scheme (see Fig. 1), by transforming its key 
generation procedure into a 2-round protocol between any user of the system, say Alice, and 
the Data Supplier. We do not make any trust assumptions about the Data Supplier or another 
entity. The basic cryptographic primitive that we make use of is an oblivious transfer of 
secrets (see Section 2.2): The Data Supplier associates Alice with two unique KD decryption 
keys, i.e., .)(,,)(, 10 >=<>=< jfjSifiS  He then sends these secrets obliviously to 
Alice, in such a way that Alice finds out exactly one of the two KD decryption keys, S0 or S1. 
The Data Supplier does not know which key Alice ended with, and Alice does not know the 
value of the other key. If the Data Supplier wants to incriminate Alice, then he can construct a 
fake pirate decoder and randomly select one of the two keys that were obliviously transferred 
to Alice. The Data Supplier will incriminate Alice with a success probability of 1/2. We 
expect that the Data Supplier will not risk of making a false accusation, as Alice can always 
prove in front of a judge that her decoder contains a decryption key other than what the pirate 
decoder contains. In such case, the cost of the Data Supplier’s false accusations Alice will be 
significantly greater than the gain from a successful framing. 
 
Remark 1. Instead of using a (1-2) oblivious transfer protocol, a (1-N) protocol could be used 
[23], where Alice would choose one out of N messages. The choice of N implies a trade off 
between correctness and efficiency. In such a case, the probability of success for a false 
accusation on behalf of the data supplier would be equal to 1/N. 
 
We also achieve anonymity for Alice: the Data Supplier does not know the identity of Alice, 
when she asks for a KD decryption key. Instead, he possesses a time-lock puzzle of Alice’s 
identity, which can be used in case of Alice being a traitor. The use of the time-lock puzzle 
offers an extra protection for Alice. If the Data Supplier wants to incriminate Alice, then he 
must start solving very difficult computational problems, i.e., the time-lock puzzles of the 
users that apply for a decryption key. Even if the Data Supplier has the time and the 
computational power to break a puzzle that points to Alice, he still has at most 50% 
probability of incriminating her, because of the oblivious transfer mechanism (see also 
Remark 1). 
 
Executing the protocol. In Figure 1, Alice creates a private/public key pair (x, a0, a1) for the 
oblivious transfer protocol and a time-lock puzzle of her real identity, TA. Alice blinds both 
(a0, a1) and TA, then signs the blinded messages with her signature key1 and sends the result to 
the Data Supplier. The Data Supplier checks the correctness of the blinded messages (see also 
Section 2.2), signs them and returns them to Alice (Step 1). 
 In Step 2, Alice un-blinds M0, M1, M2 to obtain 

,)(,)a(,)a( 1100
DDD SK

AAD
SKSK TTAA ===  where SKD is the signature key of the Data 

Supplier. Then she sends A0, A1, TAD and her public key (a0, a1) to the Data Supplier through 
an anonymous channel2 (Step 3). The Data Supplier verifies his signature on a0 and a1 and 
uses them to prepare an instance for the oblivious transfer protocol, OT(S0, S1), where S0, S1 
are two KD decryption keys. In Step 4, Alice executes OT(S0, S1) and finds out exactly one of 
the two KD keys, while the Data Supplier is not able to determine which key Alice extracted. 
 
                                                           
1 There is a Certificate Infrastructure and users are legally bound by their signature. Mechanisms to 
establish non-repudiation for digitally signed messages  are discussed in [22]. 
2 There is an anonymous channel where users can send/accept messages that cannot be traced (e.g., by 
using traffic analysis). For example, e-mail anonymity can be established using Mixmaster re-mailers2 
[20]. HTTP anonymity can be established by using services such as the Onion-Routing system [21]. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. An asymmetric key generation protocol for the KD scheme 
 
 
Tracing. When a pirate decoder is confiscated, the private decryption key eu of an unknown 
user u is exposed. The Data Supplier solves the time-lock puzzle3 assigned with the 
decryption key, identifies the user u, decides that user u is a traitor and presents the 
credentials of the user’s guilt in front of a judge. Note that if more than on traitors have been 
participated in the construction of the pirate decoder, then the new tracing algorithm of [7] for 
the KD scheme can be applied. 
 
Remark 2. If Alice is a traitor and the Court accepts the credentials presented by the Data 
Supplier, then, apart from the penalties imposed by the laws for copyright violation, Alice 
will also be subject to a penalty price that is analog to the cost for the solution of the time-
lock puzzle. 
 
3.1 Assuring the Correctness of the KD Decryption Keys 
 
In the protocol presented above, the Data Supplier is supposed to select correct decryption 
keys as input for the oblivious transfer protocol with Alice. The Data Supplier does not know 
which key Alice possesses, since he obliviously transferred two different KD decryption keys 
to Alice, and Alice selected exactly one of these keys. But, what happens if the Data Supplier 
uses two identical KD keys as input for the oblivious transfer protocol? Or, even worse, what 
happens if the Data Supplier obliviously transfers the same key(s) to another eligible user? 
 If the Data Supplier used two identical keys as input for the oblivious transfer protocol 
with Alice, then the Data Supplier would finally get to know Alice’s decryption key, since 

                                                           
3 The time T, needed for a puzzle to be solved, must be the same for all users. If necessary, cut-and-
choose techniques can be used to assure that all puzzles have been constructed with the correct time 
information. These techniques are similar to those used in blind signatures. 

Alice finds out exactly one 
out of the two pairs

a0(b0)PKT, a1(b1)PKT, TA(b2) PKT

SKA, PKA – signature key pair 
x, a0, a1 – Oblivious Transfer Key Pair 
a0 = gx, a1 = c (gx)-1 

b0, b1, b2 – Blinding Factors 
TA – Time Lock Puzzle of Alice’s identity 

(1) 

(2) 

What Alice Possesses 

SKD, PKD – signature key pair 
f(x) = w0+w1x+..+wkxk – broadcast public key 
(S0,S1) – possible decryption key pairs 
S0 = < i, f (i) > 
S1 = < j, f (j) > 

What the Data Supplier Possesses 

Alice’s Actions Data Supplier’s Actions Exchange of Messages 

M0= (a0(b0)PKD) SKD 
M1= (a1(b1)PKD) SKD 
M2= (TA(b2) PKD) SKD 

M0, M1, M2 M0  A0 = (a0) SKD 
M1   A1 = (a1) SKD 
M2   TAD = (TA) SKD 

a0, a1, A0, A1, ΤΑD 
(3) 

Anonymous channel 

β0 = gY0, y0 - random 
β1 = gY1, y1 - random 
γ0 = (α0)Y0,   γ1 = (α1)Y1 
r0 = S0 ⊕ γ0,  r1 = S1 ⊕ γ1,   

(4) 
OT(S0, S1) = β0, β1, r0, r1 

(β0)X = γ0 
(β1)Χ = ?? 
 r0 ⊕ γ0 = S0 
 r1 ⊕ ?? = ?? 

Blinding of the messages 

Un-blinding procedure 

Oblivious Transfer 

Blind signature 



Alice would choose one-out-of two identical keys. In such case, asymmetry would be broken 
and the Data Supplier could frame Alice.  
 
 On the other hand, if there is no way to assure that each instance of the oblivious 
transfer protocol contains two keys that are not re-used in any other instance for a different 
user, then there is a non-negligible probability that two legitimate users will extract the same 
KD decryption key, by executing different oblivious transfers. In case of dispute, it would not 
be clear if an innocent user is falsely accused as a traitor or if the user is actually a traitor. 
Thus, traitor tracing would not be possible.  
 For the rest of the section, we describe cut-and-choose techniques that force the Data 
Supplier to choose correct decryption keys for each oblivious transfer. Clearly, the following 
conditions are critical for the security of the system: 
 
Condition A. For each user i, i=1..n, the instance of the oblivious transfer protocol 

),( 1,0, iii SSOT  must contain two different KD decryption keys, i.e., 1,0, ii SS ≠ . 
 
Condition B. For two different users i, j, the instance ),( 1,0, jjj SSOT  of the oblivious 
transfer protocol, must contain different KD decryption keys from the instance 

),( 1,0, iii SSOT , i.e., 1,0,1,0, jjii SSSS ≠≠≠ . 
 
3.1.1 Forcing the Data Supplier to use different KD keys in each oblivious transfer 
 
We propose a cut-and-choose technique, which can be applied on the oblivious transfer 
protocol to ensure that for each user, the Data Supplier obliviously transfers two different KD 
keys, with overwhelming probability. We denote the encryption of a message m with a key X 
as )(mEncrX . 
 
Let )1,0(,)(),( 1,0, ∈>=< iSEncrSEncrOT iKiKi ii

, be two instances of the oblivious 
transfer protocol (see step 4 - Fig.1), where Si,0, Si,1 are four different KD decryption keys and 
Ki are two encryption keys of a deterministic symmetric encryption scheme (e.g. DES keys). 
Moreover, let 

iKC  be a commitment on the key Ki. The commitment could be the output of a 

hash function (e.g. MD5) applied over each key Ki. The Data Supplier T sends (OT0, 0KC || 

OT1, 1KC ) to Alice, along with a signature of that message. 
 
Phase 1: Checking the correctness of the encryptions. Alice randomly selects one of the 
two instances (say without loss of generality OT0) and T reveals all secret information for this 
instance (i.e., 1,00,01,00,0 ,,, γγyy ) in order to prove that it is well constructed. Given this 

information, Alice retrieves both )( 0,00
SEncrK  and )( 1,11

SEncrK . She compares these 

values and if )( 0,00
SEncrK  ≠ )( 1,11

SEncrK  Alice is convinced that S0,0 ≠ S0,1 since the same 

key has been used to encrypt both KD keys and the symmetric encryption scheme is 
deterministic. If the encrypted values are equal, then this means that the cleartext values 0,0S  

and 1,0S  are equal too, so T has cheated and is reported to the judge. 
 
Phase 2: Checking the correctness of the symmetric key. If the checks in phase 1 are 
correct, Alice executes the remaining oblivious transfer. In our example, this would be OT1. 
Thus, Alice will extract either )( 0,11

SEncrK  or )( 1,11
SEncrK . At this time, T is asked to send 

the corresponding symmetric key K1 to Alice. Alice checks the correctness of K1 in two steps: 



first, she re-constructs the one-way commitment 
1KC to verify that she has been given the key 

the data supplier had committed to. Second, she uses it to decrypt the encrypted outcome, and 
see if a valid KD key is generated. If either check fails, T has cheated and is reported to the 
judge; Otherwise, T has followed the protocol with overwhelming probability and Alice has 
used K1 to obtain an official KD key.  
 
Observe that a misbehaving Data Supplier has a non-negligible probability of getting caught, 
since he does not know a priori which instance he will be asked to open in phase 1, and 
which instance Alice will execute in phase 2. Thus, if one of the two instances in not well 
constructed, then T’s misbehavior will be revealed with probability ½ for each user.  

 
Note that T could try to cheat by encrypting two identical KD keys S=S* with two different 

symmetric keys K≠K*. In such case, )()( *
* SEncrSEncr

KK ≠  while S=S*, and the check in 
phase 1 will succeed. However, T has already committed to either K or K* and cannot a priori 
determine which of the two encryptions Alice will extract from the oblivious transfer 
protocol. Thus, T’s misbehavior will be revealed with probability ½ for each user. 
 
Remark 3. Because the keys are encrypted, there is no wasting of the pair of keys 0,0S and 

1,0S  that where used in the instance OT0 that was revealed to Alice in phase 1. Note that T 
does not send to Alice the symmetric encryption key K1 because in that case Alice would 
decrypt )( 0,00

SEncrK and )( 1,00
SEncrK  to obtain both keys. So, the Data Supplier can later 

use this pair of KD keys for another user, since none of these keys has been revealed to Alice. 
However, T should re-encrypt the KD keys with a different symmetric key. 
 
3.1.2 Forcing the Data Supplier to use different KD keys for different oblivious 

transfers 

In order to force the Data Supplier to use different KD keys for different oblivious transfers, 
we make use of a bulletin board. Our technique can be seen as an extension of the technique 
used in Section 3.1. We require that each instance of the oblivious transfer also contain the 
hash values of the KD keys, i.e.: 

))(),(),(,)(,( 1,0,1,0, iiiKiKKi ShashShashSEncrSEncrCOT
iii

=  

After the protocol of Section 3.1 has been executed, T publishes both hash values 
)(),( 1,0, ii ShashShash to the bulletin board. T also publishes a statement that the KD keys 

that correspond to these hash values have been registered to an authorized user. Alice, who 
has been left with exactly one KD key, hashes that key and checks if the result matches with 
the corresponding hash value, contained in OTi. If not, T is reported to the Judge. Alice also 
checks the board to see if the hash value of her KD key has been registered. If the hash of the 
KD key appears to have been registered more than one times, T is reported for cheating. 

The possibility that T has included fake hash values of the KD keys in each OTi, and gets 
away with it is less than ½. The analysis is the same as in Section 3.1. 
 
 
References 
 
[1] Peticolas, F., Anderson, R., Kuhn, M., “Information Hiding- A Survey”, Proceedings of 
the IEEE, special issue on protection of multimedia content, IEEE Vol. 87(7), 1999, pp. 1062-
1078.   



 
[2] Chor, B., Fiat, A., Naor, M., “Tracing Trators”, Advances in cryptology – CRYPTO 94, 
LNCS 293, Springer-Verlag, 1994, pp. 257-270. 
 
[3] Boneh, D., Shaw, J., “Collusion Secure Fingerprinting For Digital Data”, Advances in 
cryptology – CRYPTO 95, LNCS 963, Springer-Verlag, 1995, pp. 452-465. 
 
[4] Kurosawa, K., Demedt, Y., “Optimum traitor tracing”, Advances in cryptology – 
EUROCRYPT 98, LNCS 1403, Springer-Verlag, 1999, pp. 145-157.. 
 
[5] Stinson, D., Wei, R., “Combinatorial properties and constructions for traceability 
schemes”, SIAM Journal on Discrete Mathematics, Vol. 11(1), 1998, pp. 41-53. 
 
[6] Boneh, D., Franklin, M., “An Efficient public Key Traitor Tracing Scheme” Advances in 
cryptology – EUROCRYPT 90, LNCS 1666, Springer-Verlag, 1999, pp. 338-353. 
 
[7] Kurosawa, K., Burmester, M., Demedt, Y., “The failure of the Boneh-Franklin / Stinson-
Wei attack against optimal traitor tracing”, DIMACS 2000, 2000. 
 
[8] Rivest, R., Shamir, A., Wagner, D., “Time-Lock Puzzles and Timed-Released Crypto”, 
LCS Technical  Memo MIT/LCS/TR-684, 1996, 
http://www.theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps 
 
[9] Chaum, D., “Blind Signatures for Untraceable Payments”, Advances in Cryptology – 
CRYPTO 82, Plenum Press, pp. 199-203, 1982. 
 
[10] Schneier, B., “Applied Cryptography – Protocols, Algorithms and Source Code in C”, 2nd 
Edition, 1996. 
 
[11] Bellare, M., Micali, S., “Non-Interactive Oblivious Transfer and Applications”, 
Advances in cryptology – CRYPTO 89, LNCS, Springer-Verlag, 1990, pp. 544-557. 
 
[12] W. Diffie, M. Hellman, “New Directions in Cryptography”, IEEE Transactions on 
Information Theory IT-22, pp. 644-654, November 1976. 
 
[13] Pfitzmann, B., Schunter, M., “Asymmetric Fingerprinting“, Advances in cryptology – 
EUROCRYPT 96, LNCS 1070, Springer-Verlag, 1996, pp. 84-95. 
 
[14] Pfitzmann, B., “Trials of Traced traitors”, Information Hiding Workshop, LNCS 1174, 
Springer-Verlag, 1996, pp. 49-64. 
 
[15] Pfitzmann, B., Waidner, M., “Asymmetric Fingerprinting for Larger Collusions”, ACM 
Conference on Computer and Communication Security, ACM, 1997, pp. 151-160. 
 
[16] Pfitzmann, B., Waidner, M., “Anonymous Fingerprinting”, Advances in cryptology – 
EUROCRYPT 97, LNCS 1233, Springer-Verlag, 1997, pp. 88-102. 
 
[18] Chaum, D., Damgard, I., Graaf, J., “Multiparty Computations ensuring privacy of each 
party’s input and correctness of the result”, Advances in cryptology – CRYPTO 87, LNCS 
293, Springer-Verlag, 1988, pp. 87-119. 
 
[19] Goldreich, O., Micali, S., Wigderson, A., “How to play any mental game – or – a 
completeness theorem for protocols with honest majority”, 19th STOC, 1987, pp.218-229. 
 



[20] Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. 
Communications of the ACM, Vol. 24(2), (1981) 84-88 
 
[21] Goldschlag, D., Reed, M., Syverson, P.: Onion Routing for Anonymous and Private 
Communications. Communications of the ACM, Vol. 42(2), (1999) 39-41 
 
[22] You, C., Zhou, J., Lam, K.: On the Efficient Implementation of Fair Non-Repudiation. 
In: Proceedings of the 1997 IEEE Computer Security Foundations Workshop. IEEE CS Press 
(1997) 126-132 
 
[23] Naor, M., Pinkas, B., “Oblivious Transfer and Polynomial Evaluation”. In: Proceedings 
of the 31th ACM Symposium on Theory of Computing, ACM (1999), pp. 245-254. 
 


