
Data and Knowledge Management in Cloud
Computing Environment

Ph.D. Presentation

Eleftherios Kalogeros

Advisory Committee Members
Manolis Gergatsoulis, Christos Papathodorou, Timos Sellis

Department of Archives, Library Science and Museology
Ionian University

6 July 2022

1 / 42

Data and Query Graphs

(a)

Person2

Article1

Person1 Person3

Article2

year

Journal1

(b)

?W

?A

Journal1

?T

“Title1”

“2005”
“2008”

“Title2”

“2008”

Person4

Article3

“Title3”

“2008”

Journal2

(a) a data graph - RDF triples, each triple consist of three values -
subject value URI, predicate value URI, object value URI or Literal

(b) a query graph - BGP SPARQL query, each query triple
contains also three values - each value may be a variable (?W)

2 / 42

Embeddings (Answer)

(G) (Q)

?W

?A

Journal1

?T

“2008”

Person2

Article1

Person1

Person3

Article2

year

Journal1
“Title1”

“2005”
“2008”

“Title2”

Person4

Article3

“Title3”

“2008”

Journal2

Query (Q): Find the articles (variable ?A), its authors (variable
?W) and titles (variable ?T) published in Journal1 at year ”2008”
Two embeddings (Answers) of the query graph Q in the data
graph G (1) (?A, ?W, ?T) = (Article2, Person3, “Title2”)

(2) (?A, ?W, ?T) = (Article2, Person2, “Title2”)

3 / 42

Ph.D. Thesis Study

In all our approaches we study the problem of distributed
processing (BGP SPARQL queries) over linked data (RDF).

Our methodology is

(1) Partition data graph into graph segments and store them into
different nodes of a cluster of machines
(2) Decompose query (query graph) into subqueries
(3) Process each subquery on each data fragment in parallel
(4) Combine the intermediate results in parallel to compute the
answers of the initial query.

4 / 42

Data Decomposition
The dark nodes correspond to the border nodes (common nodes)
between the data graph segments. (B(G1) = {Person4,Article1})
Notice that the graph decomposition appearing is non-redundant

(G1)
Article1

 Title1
 2005

Person2

Article1

Person3

Article2

Article1

Article2

Journal1

 2008

 Title2

(G2)

(G3)

(G)

Person4

Person2

Article1

Person1

Person3

Journal1

 Title1

 2005
 2008

 Title2

Person4

Article3

 Title3

 2008

Journal2

Article2

Person1

Person4

Article3

 Title3

 2008

Journal2

5 / 42

Query Graph Decomposition

?P1

?A

?T

?P2

n1

n2

n3

n4 n5

(Q) (Q1) (Q2)

Journal1

?P1

?T

hasAuthor

?A

n1

n2

n5

?A

?P2

n2

n3

n4

Journal1

?P1

?P2

n1

n3

(Q3)

t1

t1

t2

t2

t3

t3

t4
t4

t5

t5

A (non-redundant)
decomposition DQ of a
query Q into 3 subqueries.
The border nodes
(common nodes) between
the query graph segments
are: B(Q1) = {n1, n2},
B(Q2) = {n2, n3},
B(Q3) = {n1, n3}.

Missing Border Nodes
MBN = [(n1, Q2), (n2, Q3), (n3, Q1)].

6 / 42

Apache Hadoop (MapReduce)

part1

part2

part3

part4

HDFS input file

Map
Task

Map
Task

Map
Task

Reduce
Task
(key1)

Reduce
Task
(key2)

Reduce
Task
(key3)

HDFS

key1,value1

key2,value2

key3,value3

key1,value4

key2,value5

key3,value6

key1,value7

key2,value8

key3,value9

HDFS

part1

part2

part3

MapReduce Programming Model

7 / 42

Apache Spark and NoSQL(MongoDB)

Apache Spark is in-memory fault tolerance computation engine.
(1) Spark RDD is a collection of elements partitioned across the
nodes of the cluster.
(2) Spark DataFrame is a table-like abstraction.

MongoDB is a NoSQL document database that manages
collections of JSON documents

8 / 42

Query evaluation approaches

▶ Query Evaluation by Joining Partial Embeddings (QEJPE
algorithm)

▶ Query evaluation by decomposing queries into generalized
stars (eval-STARS algorithm)

▶ Query evaluation by data decomposition using replication
(QE-with-Redundancy algorithm)

▶ Query evaluation over data stored in a document database
(Doc-based algorithm)

9 / 42

Query evaluation approaches - QEJPE algorithm

Query Evaluation by Joining Partial Embeddings
(QEJPE algorithm)

10 / 42

QEJPE - Partial embeddings

Query Q: (?W,?A,?T)

Partial Embeddings:
(Article2,Person2,*),
(Article2,Person3,*)

Person2

Article1

Person3

Article2

hasAuthor

hasAuthor

hasAuthor

hasSupervisor

(G2)

hasAuthor

Person1

Person4

hasSupervisor

Answer:(Article2,Person2,”Title2”),
(Article2,Person3,”Title2”)

Partial Embeddings:(Article2,*,”Title2)

Article1

Article2

hasTitle
year

Journal1

publishedIn

publishedIn

“2008”

“Title2”

(G3)

11 / 42

QEJPE algorithm Strategy

Step 1: Decompose the query Q into a tuple DQ of subqueries
Q1, . . . ,Qn, with n ≥ 1.

Step 2: Compute all possible useful partial embeddings of each
subquery Qj over each data graph segment Gi of G .

Step 3: For each subquery Qj , collect all the partial embeddings of Qj

obtained in Step 2 and join them to get total embeddings of
Qj .

Step 4: To construct the total embeddings (i.e. answers) of Q, join
the total embeddings obtained in Step 3 by using one
embedding for each subquery.

12 / 42

The Preprocessing Phase

▶ Q is decomposed into a set of subqueries Q1, . . . ,Qn.

▶ Nodes are numbered: Border nodes (1 to |B(Q)|) and
non-border nodes (|B(Q)|+ 1 to |nd(Q)|), of Q.

▶ The set MBN = {(bi , Qj)| bi ∈ BN and bi ̸∈ nd(Qj)}, is
constructed.

▶ The embeddings of a (sub)query are represented as triples of
tuples (BNt,NBNt, tF), where:
▶ BNt (resp. NBNt) stores the images of border (resp.

non-border) nodes.
▶ Asterisks (’*’) are used to represent missing values.
▶ tF keeps tracks for the triples participating in the embedding

(’+’/’-’ sign in the corresponding place of tF).

13 / 42

QEJPE Algorithm Based on Map-Reduce

QEJPE algorithm

Mapper1 Reducer1 Mapper2 Reducer2

Qi,Gj

Computes useful
(total or partial)

embeddings of Qi in
Gj

Qi,useful
embeddings

Qi, useful
embeddings

Computes the total
embeddings of Qi in

G based on useful
embeddings of Qi in
segments G1, ..., Gm

Qi, full embeddings
Qj, missing border

node values
(bni,value)

Qi, full embeddings

Qi, missing border
node values

Gets the embeddings
of a Qi and fills in its
missing border node

values using values
from the embeddings

of other subqueries Qj.

bn′, (Qi,nbn)

bn′, (Qi,nbn)

Selects one embedding
for each subquery in (Q1, .
. . , Qn) and joins them to
construct an answer of Q
(Note: the joined
embeddings are, by
construction, compatible)

Answers of Q in G

input

output

process

key,values

key,values

14 / 42

Query evaluation approaches - eval-STARS algorithm

Query evaluation by decomposing queries into generalized stars
(eval-STARS algorithm)

15 / 42

Generalized star queries

(Q)

?P1

Article1

?P2

hasTitle year

?J

publishedIn publishedIn

hasAuthor hasAuthorhasAuthor

?T

“2008”

hasSupervisor

?A

n1

n2

n3

n4

n5

n6 n7

t1 t2

t3

t4

t5
t6t7 t8

(Q1)

?P1

Article1

hasTitle

?J

publishedIn

hasAuthor

?T

(Q2)

?P1

year

?J

publishedIn

hasAuthor

“2008”

?A

?P1

?P2

hasAuthor

hasSupervisor

?A

(Q3)

n1

n1 n1

n2

n2
n3

n3

n4

n5

n6

n7

t1

t7 t8

t2

t5 t6

t3

t4

A query Q is called a generalized star query if there exists a node
c, called the central node of Q such that c is subject or object in
all query triples. (i.e. n4 node with value Article1 in Q1).

A query Q that consists from one query triple is a generalized star
query. That means that every Q can be decomposed into a set of
generalized star subqueries

16 / 42

eval-STARS algorithm Strategy

Step 1: Decompose the query Q into a tuple of generalized star
subqueries DQ = (Q1, . . . ,Qn), with n ≥ 1.

Step 2: Compute all possible embeddings of each triple in Q over each
data graph segment Gi of G .

Step 3: For each subquery Qj , collect the embeddings of all the triples
in Qj and join compatible embeddings in all possible ways to
compute the total embeddings of Qj in G .

Step 4: To construct the total embeddings (i.e. answers) of Q, join
the total embeddings obtained in Step 3 by using one
embedding for each subquery.

17 / 42

eval-STARS Algorithm Based on Map-Reduce

eval-STARS algorithm

Mapper1 Reducer1 Mapper2 Reducer2

Qi,Gj

Computes all the
embeddings of each
triple of Qi in Gj that
map the central node
ci to a border node

[(Qi, e(ci)),(o, e(o))]
or

[(Qi , e(ci)),(s, e(s))]

(Qi,v),(nk,u)

Computes all the
embeddings of Qi that
map central node ci of

Qi to v, combining
(cartesian product) all
the values u from all

the nodes nk

Qi,full embeddings

Qj, missing border
node values
(bni,value)

Qi,full embeddings

Qi, missing border
node values

Gets the embeddings
of a Qi and fills in its
missing border node
values using values
from the embeddings

of other subqueries Qj.

bn′, (Qi,nbn)

bn′, (Qi,nbn)

Selects one embedding
for each subquery in (Q1, .
. . , Qn) and joins them to
construct an answer of Q
(Note: the joined
embeddings are, by
construction, compatible)

Answers of Q in G

Computes all the
embeddings of Qi in
Gj, which map ci to a
non-border node of
Gj

Qi, full embeddings
Qj, missing border

node values
(bni,value)

input

output

process

key,values

key,values

18 / 42

Query evaluation approaches - QE-with-Redundancy

Query evaluation by data decomposition using replication
(QE-with-Redundancy algorithm)

19 / 42

Star-oriented decomposition

(G1)
Article1

hasTitle year

“Title1”
“2005”

Person2

Article1

Person3

Article2

hasAuthor

hasAuthor

hasAuthor

hasSupervisor

Article1

Article2

hasTitle
year

Journal1

publishedIn

publishedIn

“2008”

“Title2”

(G2)

(G3)

(G)

hasAuthor

Person4
hasAuthor

Person2

Article1

Person1

Person3

hasTitle
hasTitle

year year

Journal1

publishedIn
publishedIn

hasAuthor
hasAuthorhasAuthor

“Title1”

“2005”
“2008”

“Title2”

hasSupervisor

hasAuthor

Person4

hasSupervisor

Article3

hasAuthor

hasTitle

“Title3”

year

“2008”

publishedIn

Journal2

Article2

hasAuthor

Person1

Person4

hasSupervisor

Article3

hasAuthor

hasTitle

“Title3”

year

“2008”publishedIn

Journal2

publishedIn

Journal1

Person1

hasSupervisor

hasAuthor

Person2 Person3

hasAuthor hasAuthor

Person 2

hasAuthor

20 / 42

QE-with-Redundancy algorithm Strategy

Step 1: Decompose the query Q into a tuple of queries
DQ = (Q1, . . . ,Qn), with n ≥ 1, such that each query in DQ

is a subject-object star query.
(A subject-object star query is a generalized star query that
has at least one query triple whose subject is the central
node)

Step 2: Compute all possible embeddings of each subquery in DQ on
every segment in DG .

Step 3: Compute the embeddings of Q on G by joining compatible
embeddings of the subqueries Q1, . . . ,Qn.

21 / 42

QE-with-Redundancy Algorithm Based on Map-Reduce

QE-with-Redundancy algorithm

Mapper1 Reducer1 Mapper2 Reducer2

Qi,Gj

Computes all the embeddings of
Qi in Gj

If ΜBΝ is empty
bn′, (Qi,nbn)

Gets the embeddings
of a Qi and fills in its

missing border node
values using values
from the embeddings

of other subqueries Qj.

bn′, (Qi,nbn)

bn′, (Qi,nbn)

Selects one embedding
for each subquery in (Q1, .
. . , Qn) and joins them to
construct an answer of Q
(Note: the joined
embeddings are, by
construction, compatible)

Answers of Q in G

Qi,e(CB(Q)), full embeddings

Qj,e(CB(Q)), missing border
node values (bni,value)

If ΜBΝ is not empty

input

output

process

key,values

key,values

Qi,e(CB(Q)), full
embeddings

Qi,e(CB(Q)), missing border
node values (bni,value)

22 / 42

Query decomposition algorithms (1/3)
▶ Min-res algorithm decomposes a query Q into a set of

so-subqueries, such that each subquery has at most two
variables. It also allows replication of triples that contains at
most one variable, and maximizes the number of ”constraints”
(triples that do not increase the number of variables in the
query) in each subquery containing variables. As for the
subqueries that do not contain any variable, the algorithm
constructs maximal subqueries without redundant constraints.

(Q)

?P1

Article1

?P2

?J
?T

 2008

?A

n1

n2

n3

n4

n5

n6 n7

t1 t2

t3

t4

t5
t6t7 t8

(Q1)

?P1

 2008

?A

?P2

hasAuthor

?A

(Q3)

n1

n2

n2

n5

n7

t2

t6

t4

(Q2)?P1

Article1

?P2

n1

n4

t1

t3

?J

?A n2

t5

(Q4)Article1

?T

n4

n6

(Q5)
 2008 n7

t6

n5

Article1

?J

n3

n4

t7

(Q6)

 2008 n7

t6

n3

23 / 42

Query decomposition algorithms (2/3)

▶ Max-degree algorithm decomposes a query Q into a set of
so-subqueries based on the nodes degrees. We focus on
selecting first the subqueries containing as many triples as
possible. In each step of the algorithm, it finds the so-query
with max degree and removes its edges from the remaining
so-stars (i.e. redundancy is not allowed in query
decomposition).

▶ Max-degree-with-redundancy algorithm Same as
Max-degree algorithm but in each step of the algorithm, edges
from the remaining so-stars that add more constraints to the
other subqueries do not remove (i.e. redundancy is allowed in
query decomposition).

24 / 42

Query decomposition algorithms (3/3)

▶ In Max-degree algorithm and Max-degree-with-redundancy
algorithm in each iteration, if the query resulted by removing
the covered triples is not an so-query, then the query is ignored

▶ Max-degree-with-reshaping algorithm In each iteration Q
if the query resulted by removing the covered triples is not an
so-query, we add a query triple (from the covered triples) to
the query to construct a new so-query. The selected triple is
removed then from the previous selected so-query (new query
is also so-query). This approach might reshape the so-queries
constructed in the previous iterations

25 / 42

MapReduce algorithms - Properties

▶ QEJPE and eval-STARS algorithms are independent of the
way the data graph is decomposed and the way the data
graph segments obtained by this decomposition are stored in
the nodes of the cluster. QE-with-Redundance algorithm s
independent of the choice of the specific partition NP of the
nodes in N (G)− L

▶ all algorithms are independent of the algorithm used to
compute embeddings

▶ all algorithms are independent of the specific query
decomposition strategy. eval-STARS algorithm is based in
generalized star subqueries, QE-with-Redundancy algorithm is
based in subject-object star subqueries

26 / 42

Experiments setup environment

▶ Cluster with 10 virtual machines with the the following
characteristics: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
(8 Cores) with 16GB RAM, 60GB HD, Ubuntu 16.04 LTS,
64-bit Operating System. We used Apache Hadoop v3.1 with
HDFS (1 NameNode, 1 Secondary NameMode, 10 DataNodes
each one 30GB) and YARN (1 ResourceManager, 10
NodeManagers). The 10 virtual machines were connected
through external IP addresses. Python implementation.

▶ we used four different datasets (D1: 2,731,510 triples - 7 files,
D2: 5,486,199 triples - 13 files, D3: 10,979,566 triples - 25
files, D4: 21,961,070 triples - 49 files) in N-Triples format
from the Waterloo SPARQL Diversity Test Suite (WatDiv)

27 / 42

Experimental results (1/4)

Query evaluation in terms of the size of dataset

Linear Query

0

200

400

600

800

1000

1200

1400

D2 D3 D4

QEJPE-algorithm eval-STARS QE-with-Redundancy

Star Query

0

200

400

600

800

1000

1200

1400

1600

D2 D3 D4

QEJPE-algorithm eval-STARS QE-with-Redundancy

Snowflake Query

0

500

1000

1500

2000

2500

3000

3500

D2 D3 D4

QEJPE-algorithm eval-STARS QE-with-Redundancy

Average per evaluation algorithm

0

200

400

600

800

1000

1200

1400

1600

1800

2000

D2 D3 D4

QEJPE-algorithm eval-STARS QE-with-Redundancy

28 / 42

Experimental results (2/4)

Query evaluation in terms of compute nodes size per algorithm

QEJPE-algorithm

0

500

1000

1500

2000

2500

3000

3500

4 Nodes 7 Nodes 10 Nodes

S L F

eval-STARS

0

500

1000

1500

2000

2500

4 Nodes 7 Nodes 10 Nodes

S L F

QE-with-Redundancy

0

500

1000

1500

2000

2500

4 Nodes 7 Nodes 10 Nodes

S L F

29 / 42

Experimental results (3/4)

Comparison of query evaluation algorithms for a variety of query
types

Linear Query Type Evaluation

1.231
1.266 1.270

1.234

933

0

200

400

600

800

1000

1200

1400

QEJPE-algorithm
(METIS Partition)

QEJPE-algorithm
(Random Partition)

eval-STARS (METIS
Partition)

eval-STARS
(Random Partition)

QE-with-Redundancy

Star Query Type Evaluation

1.275

1.729

1.113

1.274

753

0

200

400

600

800

1000

1200

1400

1600

1800

2000

QEJPE-algorithm
(METIS Partition)

QEJPE-algorithm
(Random Partition)

eval-STARS (METIS
Partition)

eval-STARS
(Random Partition)

QE-with-Redundancy

Snowflake Query Type Evaluation

1.312 1.293

1.103

0

200

400

600

800

1000

1200

1400

QEJPE-algorithm
(METIS Partition)

QEJPE-algorithm
(Random Partition)

eval-STARS (METIS
Partition)

eval-STARS
(Random Partition)

QE-with-Redundancy

Complex Query Type Evaluation

0 0

1.809

1.530

1.068

0

200

400

600

800

1000

1200

1400

1600

1800

2000

QEJPE-algorithm
(METIS Partition)

QEJPE-algorithm
(Random Partition)

eval-STARS (METIS
Partition)

eval-STARS
(Random Partition)

QE-with-Redundancy

30 / 42

Experimental results (4/4)

Query Decomposition Algorithms Evaluation

Queries

Query Decomposition Algorithms Evaluation

1784

1544

1144

1422 1436 1428

1132
1103

1129 1144

1430 1431 1432

1305

1103
1129 1144

1430 1429 1425

1331

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

min-res max-degree max-degree-with-reshaping

31 / 42

Query evaluation approaches - Doc-based Algorithm

Query evaluation over data stored in a document database
(Doc-based algorithm)

32 / 42

Node-partition decomposition

(G1)

Person2

Article1

Person1

Journal1

“Title1”

“2005”

Person4
Person2

Article1

Person3

Article2

(G2)

▶ The six triples that contain the node Article1 are stored in a
single JSON file (similar for each node of the data graph)

▶ The number of JSON files is the number of the nodes

▶ The answers (embeddings) of each generalized star subquery
can be computed in every single JSON file (no JOINS)

33 / 42

Query decomposition algorithm

▶ Subqueries containing as many as possible non-covered (i.e.
non replicated) triples of Q are selected first. In this way, the
number of subqueries produced by decomposing the query Q
is kept as small as possible. Such selection is based on the
observation that as the number of the query triples is
increasing the number of results (number or documents
matching the subquery) is decreasing.

▶ Among the subqueries with equal number of non-covered
triples the subqueries whose central nodes are URIs precede to
our selection, comparing with the subqueries whose central
nodes are variables.

▶ In case that the above criteria are satisfied by more that one
generalized star queries we select the query with the
maximum number of literals and URI nodes.

34 / 42

Doc-based algorithm Strategy

▶ The data graph G is partitioned using the node-oriented
partitioning approach.

▶ The initial query Q is decomposed into a set DQ of
generalized star subqueries. (with the constraint that the
central node can not be literal).

▶ We, then, find the embeddings of each subquery in DQ on
each node-graph segment.

▶ Finally, we join the compatible embeddings, one for each
subquery, in order to construct the embeddings of the query
Q.

35 / 42

Apache SPARK and mongoDB implementation (1/2)

▶ Q is decomposed into a set of generalized star subqueries and
each one is transformed into the corresponding MongoDB
query.

▶ Each subquery return (one RDD) the JSON documents that
is at least one embedding from the subquery

▶ RDDs are flattened into relational-like structure. This step is
implemented in Spark and no data shuffling between cluster
nodes is required (i.e., such a transformation is performed in
parallel over each element of the RDD).

▶ RDDs are translated into Spark DataFrames (optimized join
operations)

▶ DataFrames (one for each subquery) are joined over the
common queries nodes/fields in order to compute the answer

36 / 42

Apache SPARK and mongoDB implementation (2/2)

37 / 42

Experiments setup environment

▶ Cluster with 10 virtual machines with the the following
characteristics: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
(8 Cores) with 16GB RAM, 60GB HD, Ubuntu 16.04 LTS,
64-bit Operating System. The 10 virtual machines were
connected through external IP addresses. Python
implementation.

▶ Apache Spark (6-node cluster) and MongoDB (1 router
server, 1 config server and 5 shards).

▶ we used four different datasets (D1: 8,773,357 triples, D2:
17,582,410 triples, D3: 26,342,929 triples, D4: 35,112,532
triples) in N-Triples format from the Waterloo SPARQL
Diversity Test Suite (WatDiv)

38 / 42

Experimental results (1/2)

0

25

50

75

100

125

150

175

200

225

250

L1 L3 L4 S1 S2 S3 S5 S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

sec

Query

Query evaluation experimental results

D1

D2

D3

D4

R² = 0.9743

R² = 0.9967

R² = 0.978

R² = 0.9846

0

20

40

60

80

100

120

140

D1 D2 D3 D4

time in
seconds

Dataset

Query Type Summarization Evaluation

L

S

F

C

39 / 42

Experimental results (2/2)

0

20

40

60

80

100

120

140

D1 D2 D3 D4

sec

Dataset

Query Type Summarization Evaluation Experimental Results

L

S

F

C

0

5

10

15

20

25

30

35

40

0

20

40

60

80

100

120

D1 D2 D3 D4

M
ill

io
ns

Scaling Analysis

Num of triples 1 2 3 5

Pe
rc

en
ta

ge
 (%

) o
f t

he
 e

xe
cu

tio
n

tim
e

w
.r.

t.
m

ax
 e

xe
cu

tio
n

tim
e

ac
ro

ss
 a

ll
da

ta
se

ts

N
um

be
r o

f t
up

le
s i

n
th

e
da

ta
se

t (
in

 m
ill

io
ns

)

Dataset

40 / 42

List of Ph.D. publications

▶ M. Gergatsoulis, C. Nomikos, E. Kalogeros, and M. Damigos, “An Algorithm for Querying Linked Data
Using Map-Reduce,” in Data Management in Cloud, Grid and P2P Systems - 6th International Conference,
Globe 2013, Prague, Czech Republic, August 28-29, 2013, vol. 8059, pp. 51–62

▶ C. Nomikos, M. Gergatsoulis, E. Kalogeros, and M. Damigos, “A Map-Reduce algorithm for querying linked
data based on query decomposition into stars,” in Proceedings of the Workshops of the EDBT/ICDT 2014
Joint Conference (EDBT/ICDT 2014), Athens, Greece, March 28, 2014, vol. 1133, pp. 224–231

▶ E. Kalogeros, M. Gergatsoulis, and M. Damigos, “Redundancy in Linked Data Partitioning for Efficient
Query Evaluation,” in 3rd International Conference on Future Internet of Things and Cloud, FiCloud 2015,
Rome, Italy, August 24-26, 2015, pp. 497–504

▶ E. Kalogeros, M. Gergatsoulis and M. Damigos, “Document based RDF storage method for efficient
parallel query processing,” in Metadata and Semantic Research - 12th International Conference, MTSR
2018, Limassol, Cyprus, October 23-26, 2018, vol. 846, pp. 13–25

▶ E. Kalogeros, M. Gergatsoulis and M. Damigos, “Document-based RDF storage method for parallel
evaluation of basic graph pattern queries,” International Journal of Metadata, Semantics and Ontologies,
vol. 14, no. 1, pp. 63–80, 2020

▶ E. Kalogeros, M. Gergatsoulis, M. Damigos, C. Nomikos, “Efficient query evaluation techniques over large
amount of distributed linked data,” It will be submitted

41 / 42

Other publications

▶ M. Damigos, M. Gergatsoulis, and E. Kalogeros, “Distributed evaluation of XPath queries over large
integrated XML data,” in 18th Panhellenic Conference on Informatics, PCI 2014, Athens, Greece, October
2-4, 2014, 2014, pp. 1–6

▶ M. Agathos, E. Kalogeros, and S. Kapidakis, “A Case Study of Summarizing and Normalizing the
Properties of DBpedia Building Instances,” in Research and Advanced Technology for Digital Libraries -
20th International Conference on Theory and Practice of Digital Libraries, TPDL 2016, Hannover,
Germany, September 5-9, 2016, vol. 9819, pp. 398–404

▶ M. Gergatsoulis, G. Papaioannou, E. Kalogeros, and R. Carter, “Representing Archeological Excavations
Using the CIDOC CRM Based Conceptual Models,” in Metadata and Semantic Research - 14th
International Conference, MTSR 2020, Madrid, Spain, December 2-4, 2020, vol. 1355, pp. 355–366

▶ M. Gergatsoulis, G. Papaioannou, E. Kalogeros, I. Mpismpikopoulos, K. Tsiouprou, and R. Carter,
“Modelling Archaeological Buildings Using CIDOC-CRM and Its Extensions: The Case of Fuwairit, Qatar”,
in Towards Open and Trustworthy Digital Societies - 23rd International Conference on Asia-Pacific Digital
Libraries, ICADL 2021, Virtual Event, December 1–3, 2021, vol. 13133, pp. 357–372

▶ E. Kalogeros, M. Damigos, M. Sfakakis, S. Zapounidou, A. Drakopoulou, C. Zervopoulos, G. Martinis, C.
Papatheodorou, and M. Gergatsoulis, “Digitizing, Transcribing and Publishing the Handwritten Music Score
Archives of Ionian Islands Philharmonic Bands,” in Metadata and Semantic Research - 15th International
Conference, MTSR 2021, Virtual Event, November 29 - December 3, 2021, vol. 1537, pp. 370–381

42 / 42

	Data, Query Graphs, Embeddings and Decompositions
	Data and Query Graphs
	Embeddings (Answer)
	Ph.D. Thesis Study
	Data and Query Graph Decomposition

	Big Data Frameworks
	Apache Hadoop (MapReduce), Apache Spark and NoSQL(MongoDB)

	Query evaluation approaches
	QEJPE algorithm
	eval-STARS algorithm
	QE-with-Redundancy algorithm
	MapReduce Algorithms Experimental Results
	Doc-based Algorithm
	Doc-based Algorithm experimental results

	List of publications
	List of Ph.D. publications
	Other publications

