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Data and Query Graphs
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(a) a data graph - RDF triples, each triple consist of three values -
subject value URI, predicate value URI, object value URI or Literal

(b) a query graph - BGP SPARQL query, each query triple
contains also three values - each value may be a variable (?W)
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Embeddings (Answer)
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Query (Q): Find the articles (variable ?A), its authors (variable
?W) and titles (variable ?T) published in Journal1 at year ”2008”
Two embeddings (Answers) of the query graph Q in the data
graph G (1) (?A, ?W, ?T) = (Article2, Person3, “Title2”)

(2) (?A, ?W, ?T) = (Article2, Person2, “Title2”)
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Ph.D. Thesis Study

In all our approaches we study the problem of distributed
processing (BGP SPARQL queries) over linked data (RDF).

Our methodology is

(1) Partition data graph into graph segments and store them into
different nodes of a cluster of machines
(2) Decompose query (query graph) into subqueries
(3) Process each subquery on each data fragment in parallel
(4) Combine the intermediate results in parallel to compute the
answers of the initial query.
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Data Decomposition
The dark nodes correspond to the border nodes (common nodes)
between the data graph segments. (B(G1) = {Person4,Article1})
Notice that the graph decomposition appearing is non-redundant

(G1)
Article1

 Title1 
 2005 

Person2

Article1

Person3

Article2

Article1

Article2

Journal1

 2008 

 Title2 

(G2)

(G3)

(G)

Person4

Person2

Article1

Person1

Person3

Journal1

 Title1 

 2005 
 2008 

 Title2 

Person4

Article3

 Title3 

 2008 

Journal2

Article2

Person1

Person4

Article3

 Title3 

 2008 

Journal2

5 / 42



Query Graph Decomposition
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A (non-redundant)
decomposition DQ of a
query Q into 3 subqueries.
The border nodes
(common nodes) between
the query graph segments
are: B(Q1) = {n1, n2},
B(Q2) = {n2, n3},
B(Q3) = {n1, n3}.

Missing Border Nodes
MBN = [(n1, Q2), (n2, Q3), (n3, Q1)].
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Apache Hadoop (MapReduce)
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Apache Spark and NoSQL(MongoDB)

Apache Spark is in-memory fault tolerance computation engine.
(1) Spark RDD is a collection of elements partitioned across the
nodes of the cluster.
(2) Spark DataFrame is a table-like abstraction.

MongoDB is a NoSQL document database that manages
collections of JSON documents
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Query evaluation approaches

▶ Query Evaluation by Joining Partial Embeddings (QEJPE
algorithm)

▶ Query evaluation by decomposing queries into generalized
stars (eval-STARS algorithm)

▶ Query evaluation by data decomposition using replication
(QE-with-Redundancy algorithm)

▶ Query evaluation over data stored in a document database
(Doc-based algorithm)
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Query evaluation approaches - QEJPE algorithm

Query Evaluation by Joining Partial Embeddings
(QEJPE algorithm)
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QEJPE - Partial embeddings

Query Q: (?W,?A,?T)
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QEJPE algorithm Strategy

Step 1: Decompose the query Q into a tuple DQ of subqueries
Q1, . . . ,Qn, with n ≥ 1.

Step 2: Compute all possible useful partial embeddings of each
subquery Qj over each data graph segment Gi of G .

Step 3: For each subquery Qj , collect all the partial embeddings of Qj

obtained in Step 2 and join them to get total embeddings of
Qj .

Step 4: To construct the total embeddings (i.e. answers) of Q, join
the total embeddings obtained in Step 3 by using one
embedding for each subquery.
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The Preprocessing Phase

▶ Q is decomposed into a set of subqueries Q1, . . . ,Qn.

▶ Nodes are numbered: Border nodes (1 to |B(Q)|) and
non-border nodes (|B(Q)|+ 1 to |nd(Q)|), of Q.

▶ The set MBN = {(bi , Qj)| bi ∈ BN and bi ̸∈ nd(Qj)}, is
constructed.

▶ The embeddings of a (sub)query are represented as triples of
tuples (BNt,NBNt, tF ), where:
▶ BNt (resp. NBNt) stores the images of border (resp.

non-border) nodes.
▶ Asterisks (’*’) are used to represent missing values.
▶ tF keeps tracks for the triples participating in the embedding

(’+’/’-’ sign in the corresponding place of tF ).
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QEJPE Algorithm Based on Map-Reduce
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Query evaluation approaches - eval-STARS algorithm

Query evaluation by decomposing queries into generalized stars
(eval-STARS algorithm)
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Generalized star queries
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A query Q is called a generalized star query if there exists a node
c, called the central node of Q such that c is subject or object in
all query triples. (i.e. n4 node with value Article1 in Q1).

A query Q that consists from one query triple is a generalized star
query. That means that every Q can be decomposed into a set of
generalized star subqueries
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eval-STARS algorithm Strategy

Step 1: Decompose the query Q into a tuple of generalized star
subqueries DQ = (Q1, . . . ,Qn), with n ≥ 1.

Step 2: Compute all possible embeddings of each triple in Q over each
data graph segment Gi of G .

Step 3: For each subquery Qj , collect the embeddings of all the triples
in Qj and join compatible embeddings in all possible ways to
compute the total embeddings of Qj in G .

Step 4: To construct the total embeddings (i.e. answers) of Q, join
the total embeddings obtained in Step 3 by using one
embedding for each subquery.
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eval-STARS Algorithm Based on Map-Reduce

eval-STARS algorithm
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Query evaluation approaches - QE-with-Redundancy

Query evaluation by data decomposition using replication
(QE-with-Redundancy algorithm)
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Star-oriented decomposition
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QE-with-Redundancy algorithm Strategy

Step 1: Decompose the query Q into a tuple of queries
DQ = (Q1, . . . ,Qn), with n ≥ 1, such that each query in DQ

is a subject-object star query.
(A subject-object star query is a generalized star query that
has at least one query triple whose subject is the central
node)

Step 2: Compute all possible embeddings of each subquery in DQ on
every segment in DG .

Step 3: Compute the embeddings of Q on G by joining compatible
embeddings of the subqueries Q1, . . . ,Qn.
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QE-with-Redundancy Algorithm Based on Map-Reduce

QE-with-Redundancy algorithm
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Query decomposition algorithms (1/3)
▶ Min-res algorithm decomposes a query Q into a set of

so-subqueries, such that each subquery has at most two
variables. It also allows replication of triples that contains at
most one variable, and maximizes the number of ”constraints”
(triples that do not increase the number of variables in the
query) in each subquery containing variables. As for the
subqueries that do not contain any variable, the algorithm
constructs maximal subqueries without redundant constraints.
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Query decomposition algorithms (2/3)

▶ Max-degree algorithm decomposes a query Q into a set of
so-subqueries based on the nodes degrees. We focus on
selecting first the subqueries containing as many triples as
possible. In each step of the algorithm, it finds the so-query
with max degree and removes its edges from the remaining
so-stars (i.e. redundancy is not allowed in query
decomposition).

▶ Max-degree-with-redundancy algorithm Same as
Max-degree algorithm but in each step of the algorithm, edges
from the remaining so-stars that add more constraints to the
other subqueries do not remove (i.e. redundancy is allowed in
query decomposition).
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Query decomposition algorithms (3/3)

▶ In Max-degree algorithm and Max-degree-with-redundancy
algorithm in each iteration, if the query resulted by removing
the covered triples is not an so-query, then the query is ignored

▶ Max-degree-with-reshaping algorithm In each iteration Q
if the query resulted by removing the covered triples is not an
so-query, we add a query triple (from the covered triples) to
the query to construct a new so-query. The selected triple is
removed then from the previous selected so-query (new query
is also so-query). This approach might reshape the so-queries
constructed in the previous iterations
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MapReduce algorithms - Properties

▶ QEJPE and eval-STARS algorithms are independent of the
way the data graph is decomposed and the way the data
graph segments obtained by this decomposition are stored in
the nodes of the cluster. QE-with-Redundance algorithm s
independent of the choice of the specific partition NP of the
nodes in N (G )− L

▶ all algorithms are independent of the algorithm used to
compute embeddings

▶ all algorithms are independent of the specific query
decomposition strategy. eval-STARS algorithm is based in
generalized star subqueries, QE-with-Redundancy algorithm is
based in subject-object star subqueries
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Experiments setup environment

▶ Cluster with 10 virtual machines with the the following
characteristics: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
(8 Cores) with 16GB RAM, 60GB HD, Ubuntu 16.04 LTS,
64-bit Operating System. We used Apache Hadoop v3.1 with
HDFS (1 NameNode, 1 Secondary NameMode, 10 DataNodes
each one 30GB) and YARN (1 ResourceManager, 10
NodeManagers). The 10 virtual machines were connected
through external IP addresses. Python implementation.

▶ we used four different datasets (D1: 2,731,510 triples - 7 files,
D2: 5,486,199 triples - 13 files, D3: 10,979,566 triples - 25
files, D4: 21,961,070 triples - 49 files) in N-Triples format
from the Waterloo SPARQL Diversity Test Suite (WatDiv)
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Experimental results (1/4)

Query evaluation in terms of the size of dataset
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Experimental results (2/4)

Query evaluation in terms of compute nodes size per algorithm
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Experimental results (3/4)

Comparison of query evaluation algorithms for a variety of query
types
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Experimental results (4/4)

Query Decomposition Algorithms Evaluation

Queries
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Query evaluation approaches - Doc-based Algorithm

Query evaluation over data stored in a document database
(Doc-based algorithm)
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Node-partition decomposition
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▶ The six triples that contain the node Article1 are stored in a
single JSON file (similar for each node of the data graph)

▶ The number of JSON files is the number of the nodes

▶ The answers (embeddings) of each generalized star subquery
can be computed in every single JSON file (no JOINS)
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Query decomposition algorithm

▶ Subqueries containing as many as possible non-covered (i.e.
non replicated) triples of Q are selected first. In this way, the
number of subqueries produced by decomposing the query Q
is kept as small as possible. Such selection is based on the
observation that as the number of the query triples is
increasing the number of results (number or documents
matching the subquery) is decreasing.

▶ Among the subqueries with equal number of non-covered
triples the subqueries whose central nodes are URIs precede to
our selection, comparing with the subqueries whose central
nodes are variables.

▶ In case that the above criteria are satisfied by more that one
generalized star queries we select the query with the
maximum number of literals and URI nodes.
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Doc-based algorithm Strategy

▶ The data graph G is partitioned using the node-oriented
partitioning approach.

▶ The initial query Q is decomposed into a set DQ of
generalized star subqueries. (with the constraint that the
central node can not be literal).

▶ We, then, find the embeddings of each subquery in DQ on
each node-graph segment.

▶ Finally, we join the compatible embeddings, one for each
subquery, in order to construct the embeddings of the query
Q.
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Apache SPARK and mongoDB implementation (1/2)

▶ Q is decomposed into a set of generalized star subqueries and
each one is transformed into the corresponding MongoDB
query.

▶ Each subquery return (one RDD) the JSON documents that
is at least one embedding from the subquery

▶ RDDs are flattened into relational-like structure. This step is
implemented in Spark and no data shuffling between cluster
nodes is required (i.e., such a transformation is performed in
parallel over each element of the RDD).

▶ RDDs are translated into Spark DataFrames ( optimized join
operations)

▶ DataFrames (one for each subquery) are joined over the
common queries nodes/fields in order to compute the answer
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Apache SPARK and mongoDB implementation (2/2)
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Experiments setup environment

▶ Cluster with 10 virtual machines with the the following
characteristics: Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz
(8 Cores) with 16GB RAM, 60GB HD, Ubuntu 16.04 LTS,
64-bit Operating System. The 10 virtual machines were
connected through external IP addresses. Python
implementation.

▶ Apache Spark (6-node cluster) and MongoDB (1 router
server, 1 config server and 5 shards).

▶ we used four different datasets (D1: 8,773,357 triples, D2:
17,582,410 triples, D3: 26,342,929 triples, D4: 35,112,532
triples) in N-Triples format from the Waterloo SPARQL
Diversity Test Suite (WatDiv)
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Experimental results (1/2)
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Experimental results (2/2)
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