On Transformations into Linear Database Logic
Programs*

Foto Afrati', Manolis Gergatsoulis?, Maria Katzouraki?

! Dept. of Electrical and Computer Engineering,
National Technical University of Athens, 157 73 Athens, Greece,
e_mail: afrati@softlab.ece.ntua.gr
2 Inst. of Informatics & Telecom. N.C.S.R. ‘Demokritos’,
153 10 A. Paraskevi Attikis, Greece
e_mail: manolis@iit.nrcps.ariadne-t.gr

Abstract. We consider the problem of transformations of logic pro-
grams without function symbols (database logic programs) into a special
subclass, namely linear logic programs. Linear logic programs are de-
fined to be the programs whose rules have at most one intentional atom
in their bodies. a) We investigate linearizability of several syntactically
defined subclasses of programs and present both positive and negative
results (i.e. demonstrate programs that cannotbe transformed into a lin-
ear program by any transformation technique), and b) We develop an
algorithm which transforms any program in a specific subclass namely
the piecewise logic programs into a linear logic program.

Keywords: program transformations, Datalog programs, program opti-
mization, deductive databases.

1 Introduction

Logic program transformation has been the object of a large amount of research
activity recently. The program transformation methodology is often followed in
order to improve the efficiency of the program.

In this paper, we consider logic programs without function symbols and in-
vestigate the problem of transforming them into a syntactically simple subclass,
namely the linear programs. In general, it 1s desirable, whenever possible, to
replace non-linear programs by equivalent linear programs, because there are
efficient algorithms for the computation of the latter which do not extend to the
former. Linear programs have been widely studied [1, 13, 4] both as concerns
their efficiency and the possibility of transformation of non-linear programs into
linear. A program is linear if all the rules are linear, i.e., there is at most one
intentional atom in the rule’s body.

As an example, consider the following program which checks if there is a path
joining two nodes of a graph:

path(X,Y) « edge(X,Y).
path(X,Y) < path(X, Z), path(Z,Y).

* This paper appears in ‘Perspectives of System Informatics’ Proceedings of the 2nd Inter-
national Adrei Ershov Memorial Conference, Akademgorodok, Novosibirsk, Russia, 1996,
LNCS 1181, D. Bjgrner, M. Broy, |. V. Pottosin (eds), pp 433-444, Springer-Verlag.

This program is equivalent to:

path(X,Y) « edge(X,Y).
path(X,Y) « edge(X, Z), path(Z,Y).

The second is a linear program, while the first is not.

In this paper we investigate the problem of transformation into linear pro-
grams from two different perspectives: a) We discuss the expressivity of linear
programs by demonstrating the fact that this subclass of programs is quite rich
since it can describe some quite difficult problems and, still, on the other end,
there are some very simple programs that are proven not to be linearizable (i.e.,
they cannot be transformed into linear programs). b) We present an algorithm
that transforms a specific subclass of programs, namely the piecewise linear pro-
grams, into linear programs. This algorithm still applies in the general case (i.e.,
when function symbols are allowed).

The results in part (a) above are presented in a unified way to point out
certain limits that program transformations cannot go beyond. They are proven
after developing elaborate technical tools [1, 3, 2]. The results in part (b) are
proven by presenting an algorithm that uses unfold/fold techniques in a co-
ordinated form to arrive in a certain syntactically simpler program. On top on
techniques used in [16, 17], we had to develop some more technical tools to show
our results.

The results presented here are also interesting in view of the fact that they
attack, the problem of program transformation from the point of view of defining
a priori the subclass of programs we aim at.

The rest of this paper is organized as follows. After giving some prelimi-
naries in section 2, we investigate linearizability of several syntactically defined
subclasses of programs and present both positive and negative results in section
3. In section 4, we present our transformation algorithm, and in section 5 we see
an application of this algorithm. Finally, in section 6, a conclusion is given.

2 Preliminaries

In the following, we assume familiarity with the basic terminology of first order
logic and logic programming [12].

2.1 Datalog programs

Deductive database systems divide their information into two categories: The
data which are represented by a predicate with constant arguments (all true
tuples are stored in the database) and the rules which define new predicates in
terms of existing ones. Rules are Horn clauses without function symbols. The
data are often referred to as the EDB (extensional database) and the rules as the
IDB (intensional database). A collection of rules is also called a Datalog program.

A predicate p depends on a predicate ¢ iff there is a rule with p in its head
and either ¢ or a predicate r which depends on ¢, in its body. An atom B is
called in the body of a clause C' iff B is unifiable with an atom in the body of C'.

Definition 1. The transitive closure of a predicate p in a program P w.r.t. de-
duction is a set of clauses Sp where: C'1s in Sp if its head predicate is p, or there

is a clause C’ in Sp and the head of C' is called in the body of C".

Definition 2. A predicate p is a recursive predicate iff p depends on itself. Two
predicates p and ¢ are mutually recursive iff p depends on ¢ and ¢ depends on p.
A predicate p is said to be a non-recursive predicate iff p is not recursive.

Definition 3. A Datalog program P is said to be peicewise linear iff for every
rule in P, at most one atom with a predicate which is mutually recursive with
the predicate in its head, is included in 1ts body. P is said to be linear iff every
rule in P has at most one intensional atom in its body.

2.2 Unfold/fold transformations

Unfold/fold transformations[15, 17, 8, 9] for definite clause programs were first
formulated in [18] so as to preserve the meaning of programs. The meaning M (P)
of a logic program P is defined as: M (P) = {A]A is a ground atom which is
a logical consequence of P}. M(P) is identical to[12] the least Herbrand model
of P. In the system in[18], which is used in this paper, we start from an initial
program Py, and produce a sequence of programs by applying transformation
rules:

Definition4. An initial program Py, is a logic program satisfying the following
conditions:

a) Py is divided into two disjoint sets of clauses, Py cyy and Pyq. The predicates
defined in P, are called new predicates while those defined in P4 are called
old predicates.

b) The new predicates appear neither in P,4 nor in the bodies of the clauses
m Pew.

Definition 5. Let C' be a clause in P, ({ > 0) : A « B, K, where B is an atom
and K a conjunction of atoms, and (4, ...,C}, all clauses in P, whose heads
are unifiable with B by most general unifiers 61, ..., 8,,. The result of unfolding
C at B is the set {C1,....,C},} such that if C; (1 < j <m)is B; + Q; and
B;6; = B6;, then C‘; is (A — @y, [{)9] Then, P41 = (Pl—{C})U{C{, ey CLY
C is called the unfolded clause and C1,, Cy, the unfolding clauses. The atom
Aj; 1is called the unfolded atom.

Definition 6. Let C' be the clause H + K, L in P, and I the clause A + K’
in Ppew, where K, K’ and L are conjunctions of atoms. Then, the clause C’ :
H + A8 L is the result of folding C using F, if there exists a substitution 6
satisfying the following conditions:

a) K' = K.

b) All variables in the body of F', which do not appear in the head of F' are
mapped through 6 into distinct variables which do not occur in C”.

c) Either the head predicate of C'is an old predicate, or C' has been unfolded
at least once in the sequence Py, Py,, P_1.

d) F is the only clause in Py whose head is unifyable with Af. Then, Py; =
(P —{CHU{C"}. C is called the folded clause, and F' is called the folding clause.
Byt is called the atom introduced by folding.

2.3 On the Complexity of Datalog programs

Because of their recursive nature, queries expressed in Datalog are harder to eval-
uate (from the point of view of parallel complexity): while first-order queries are
in deterministic log-space [20] (even in AC?), Datalog programs are sometimes
log-space complete for P:

access(X) + source(X).
access(X) + access(Y1), access(Ya), triple(Y1,Ya, X).

The above program encodes the well-known path system accessibility problem
[6]: the EDB predicates source and triple represent, respectively, source nodes
and accessibility conditions; triple(y1, y2, #) means that if y;, y2 are accessible
from the source nodes, then so is x.

A large body of recent research has addressed the problems of finding effi-
cient evaluation methods and compile-time optimization techniques for Datalog
programs (see [5] for a survey). These studies usually concentrate on syntacti-
cally restricted Datalog programs; two common approaches are the following: a)
Restrict the width (number of arguments) of the IDB predicates. b) Impose a
linearity condition on the rules (as, e.g., in [10, 13, 14]).

It has been observed that linear Datalog programs can be evaluated in NC?
(cf. [7, 19]). Moreover, all the Datalog programs currently known to be P-
complete (see [7, 19, 4]) can be shown to require non-linear rules, because in
each case there is a first-order reduction from path system accessibility. The
question naturally suggested, then, is the following: are there Datalog programs
in N'C which are not equivalent to linear programs? This question has been
answered affirmatively in [1]: There exist Datalog programs in A'C? which are
not equivalent to any linear program (see theorems 9, 10 below). Programs in
theorems 9, 10 belong to the class of elementary chain programs [19, 4];

3 Linearizable and non-linearizable Datalog Programs

In this section we focus on databases with only binary relations; such databases
can be thought of as directed graphs with edges labelled by EDB predicates.
We consider the special class of chain queries, which detect the existence of
certain paths. Among them there are queries in A'C? requiring non-linear Datalog
programs[1].

3.1 Chain Queries and Linear Recursion

Let D = (D,ry1,...,ry) be a database where each r; is binary, and let ¥ =
{R1,...,Rn} be an alphabet containing one letter R; for each relation r; (we

use the same symbol, R;, for the letter of X' corresponding to r; and for the EDB
predicate denoting r;). A path spelling a word R;, ---R;, € X* is a sequence
u1, ..., w41 of elements of D such that (u;,ujqp1) € vy, for j=1,...,0;if [=0,
the path spells the empty word, e.

For any language L C X* | the chain query Qr oblained from L is defined as:
Qr(D) = {(u,v) : there is a path of D from u to v, spelling a word in L}.

Chain queries obtained from context-free languages are of particular interest:
a context-free grammar G (generating a language L(()) corresponds in a natural
way to a Datalog program computing the chain query)1 (s). We illustrate this
correspondence by an example:

Erample 1. 1If G is [— RiIRal | €, then Qp(¢) is computed by the program:

I(X,Y) « R\(X, Z1),1(Z1, Z5), Ro(Za, Z3),1(Z3,Y).
I(X, X).

Datalog programs as above are called elementary chain programs [19]. We
now turn to chain queries which are linearizable.

Erample 2. The language L = {R\R,RLR% : i,j > 0} can be shown to be not
linear context free. Still there is a linear Datalog program that expresses QJr:
I(X,)Y)+« P(X,Z,2,Y).
P(X1,Y1,X9,Ya) « P(X{,Y{, X2,Ys), R1(X1, X7), Ra(Y{, Y1).
P(X1,Y1, X0, Ys) « P(X1,Y1, X5,Y9), Rs(Xa, X4), Ra(Y5, Ya).
P(X1, X1, X2, Xa).

The same is true for the language L = {RiRéRé 21> 0}
[(X,Y) « P(X,Z,2,Y).
P(XlaylaXzaYQ) — P(X{,Yll,Xé,Yz),Rl(Xl,X{),RQ(Yll,Yl),R3(X2,Xé).
P(XlaXlaXzaX2)~

It can be shown that the class of linearizable chain queries is closed under
general substitutions. A substitution is a mapping f from X to subsets of 1*;
it is extended to strings by defining f(R;, --- Ri,) = {pi, - -pi, = pi; € F(Rs))},
and to languages by defining f(L) =, ¢, f(p).

Theorem 7. If Qr is linearizable, and Qg (g, is linearizable, i = 1,.. . n, then
Qy(ry is linearizable.

Corollary 8. If Qp, Q1+ are linearizable, then Qrur, Qri, Qr+ are lineariz-
able.
3.2 Non-linearizable Chain Queries in A'C?

Consider the following context-free language L® C { Ry, Ro}*:
LY = {p : p has the same number of occurrences of R; and Rs}.
By the results in [4, 19] the chain query Qo is in N'C*:

Theorem 9. The chain query Qro is not linearizable.

Theorem 10. If L is generated by one of the context-free grammars below, then
the chain query @Qr is not linearizable:

a) I — IR\ I(Ro IR 1) | €, where j > 1.

b) I — (IR IRyI(R 1) | ¢, where i, j > 1.

In [4] it is shown that the context-free languages in Theorem 10 can be
accepted by pushdown automata satisfying the polynomial stack property, and
therefore the corresponding chain queries are in N'C%.

4 Transforming piecewise linear to linear programs

In this section we show that a piecewise linear Datalog program can always be
transformed into an equivalent linear program using unfold /fold transformations.

Ezample 3. Let P = {Cy,C4,C5,Cy, C5,Cs, C7,Cs, Co} be the following piece-

wise linear Datalog program:

Cy: a(X)Y) « edbl(X,Y).

Cy: a(X)Y) «b(X,2),a(Z,Y).

Cs: b(X,Y) — edb2(X,Y).

Ca: b(X,Y) « edb3(X, 2, W), c(Z, W, F),b(F,Y).
Cs: ¢(X,Y,2) ¢ edbd(X,Y,W),d(W, 2).

Cs: d(X,)Y) + edb5(X,Y).

C7: d(X)Y) « edb6(X,7),e(2,Y).

Cs: e(X,Y) « edb7(X,Y).

Cy: e(X,Y) « edb8(X, 7),d(Z,Y).

P is not linear due to the non-linear clauses C's and C4. We will replace Uy
with linear clauses. For this, we unfold C}y at ‘c(Z, W, F')’. We obtain:

Cio: (X,Y) < edb3(X, Z, W), edbd(Z, W, W1),d(W1, F),b(F,Y).
Now we introduce the following Eureka definition.
Dy newl(X,Y) « d(X,2),b(Z2,Y).
Then, we fold C1g using D;. We take:
Ci1: (X,)Y) « edb3(X, Z, W), edbd(Z, W, W1),newl (W1,Y).
Now, we try to find a (linear) recursive definition for the predicate ‘newl’.
For this, we unfold Dy at ‘d(X, Z)’ using the clauses Cs and C7. We obtain:
Cio: newl(X,Y) « edb5(X, 7),b(Z,Y).
Ciz: newl(X,Y) « edb6(X, W), e(W, Z),b(Z,Y).
Unfolding Cy3 at ‘e(W, Z)’ using Cs and Cy we get:
Cig 0 newl(X,Y) « edb6(X, W), edb7(W, Z),b(Z,Y).
Cis 0 newl(X,Y) « edb6(X, W), edb8(W,Q),d(Q, Z),b(Z,Y).
Folding 15 using Dy we obtain:

Cis @ newl(X,Y) « edb6(X, W), edb8(W,Q), newl(Q,Y).

{C45,C14,C16} is a linear program for ‘newl’. The new program is P; =
{01, Cz, 03, 05, 06,07, Cg, Cg, 011, 012, 014, Cl6}~ P is equivalent to PU {Dl}
Similarly, starting from P;, we can replace C; by an equivalent set of linear
clauses. In this way we obtain a linear program.

In the following, we present an algorithm based on unfold/fold transformation
rules, which transforms a piecewise linear Datalog program into a linear program,
building on top on techniques used in [17].

Definition11. An unfolding selection rule (or U-rule) is a (partial) function
from clauses to atoms. The value of the function for a clause is a body atom
called the selected atom.

Definition12. Let P be a program, C a clause and S a U-rule. An unfolding
tree (or U-tree for short) T for < P,C > via S is a tree labelled with clauses,
such that:

a) C'is the root label of T, and

b) If M be a node labelled byA + B, K, and B the atom selected by S.
Then, for each clause B’ <~ L in P for which a most general unifier # of B and
B’ exists, there is a child node N of M labelled by: (A « L, K)#.

We suppose that an unfolding selection rule S is uniquely determined by the
set of IDB atoms in the bodies of the clauses.

Definition13. A nonempty tree 1" is called an upper portion of a tree T' iff the
following hold:

a) The set of nodes of 7" is contained in the set of nodes of T,

b) If N is a node of T’ then every ancestor of N in T is also an ancestor of
N in T" and,

c) If N isin T then any brother of N in T is also a brother of N in T".

An upper portion of T' consisting of a single node is called a trwial upper
portion.

For any program P and a clause C, if L is the set of leaves of an upper
portion of a U-tree for < P,C' > via S, then[17] M(PU{C}) = M(PU L).

Definition14. Let P be a program, C' a clause, and S a U-rule. A clause D
in a node of a U-tree T for < P,C' > via S is said to be foldable iff there is an
ancestor F' of D in T and a tuple I of IDB atoms such that the tuples of all IDB
atoms in the bodies of both C' and F' are instances of I. F' is called a folding
ancestor of D.

Definition15. Let P be a Datalog program, C' a clause, and S a U-rule. The
U-tree T for < P,C' > via S is said to be linearizable iff there is a finite upper
portion U of T such that each leaf clause of U is either a linear clause or a

foldable clause or a failing clause3. U is said to be a linearizable upper portion

of T.

Definition16. A non-linear clause C in a piecewise linear program P is mini-
mally non-linear iff the transitive closure w.r.t. deduction, of any body atom B
of C'; which is not mutually recursive with the head of (' is a linear program.

We can easily show that, for any piecewise linear Datalog program P, either
P is linear or there is (at least one) minimally non-linear clause C' in P.

Definition17. A linear unfolding selection rule is an unfolding selection rule S
such that S always selects an IDB body atom (if any) of C' with a predicate p
whose transitive closure is a linear program, otherwise S(C) is undefined.

It is easy to see that if a clause C' in a program P is minimally non-linear
then, there is always a body atom of C' whose transitive closure in P w.r.t.
deduction is a linear program. Therefore, a linear U-rule is always defined for
any minimally non-linear clause.

Lemma18. Let C' be a minimally non-linear clause in P U{C}, S a linear
U-rule and U a U-tree for < P,C > wvia S. Then all non-linear clauses wn the
set of leaves L of an upper portion of U are also minimally non-linear clauses
m PUL.

An immediate consequence of lemma 18 is that when we unfold a minimally
non-linear clause C' in a program P via an unfolding selection rule S| then S
is also defined for all non-linear clauses (if any) produced by this unfolding (as
these clauses are minimally non-linear).

Procedure 4.1 (Clause Linearization procedure (CLP)).

Input : a piecewise linear program P, a minimally non-linear clause C' in P and
a linear U-rule S.

QOutput : a set of linear clauses I and a set of new predicate definitions ED.

1. Construct a linearizable U-tree T" for < P,C > via S and select a minimal
linearizable upper portion U of T'.

2. For every foldable leaf clause D of U construct a clause £ with a fresh
predicate symbol in its head, and a tuple I of IDB atoms in its body such
that both, the tuple Ip of the IDB atoms in the body of D and the tuple Ip
of the IDB atoms in the body of the folding ancestor F' of D, are instances
oft* I. The head arguments of F is the minimal subset of the variables in
the body of E such that both D and F can be folded using E. Put £ in
ED unless E differs from a clause in ED only in the names of their head
predicates or/and in the order of the arguments of their heads.

% A failing clause is a clause with a body atom that does not unify with the head of
any clause in the program. A failing clause can be removed from the program.

* The best choice is to use as I the most specific generalization[11] of ID and IF. In
[11], an algorithm to compute the most specific generalization of a set of expressions
is given.

3. Select the (possibly trivial) minimal upper portion MU of U so as each leaf
clause of MU is either a failing clause or a linear clause or it can be folded
using a clause in ED. Collect the set of leaves of MU and perform all possible
foldings using the clauses in ED obtaining a set LC of clauses.

4. For each clause E; in ED compute a corresponding linear definition Lg, as
follows: Construct a (non-trivial) minimal U-tree Up, for < P, E; > via S
such that each leaf clause of Ug, is either a failing clause or a linear clause
or it can be folded using a clause in ED. Collect the set of leaves of Ug, and
perform all possible foldings using the clauses in £D obtaining Lg, .

5. Let L=LCULg, U...ULg, .

All clauses in ED are by construction, non-linear clauses (see step 3). More-
over, it is easy to see that the linear selection rule S (used in step 1) is always
defined for the clauses in ED in the program P U ED. This is due to the fact
that all clauses in £ D are minimally non-linear in P U ED.

Theorem 19. The clause linearization procedure (CLP) applied to a minimally
non-linear clause C' of a piecewise linear Datalog program P always terminates
and returns a set of linear clauses L and a set of new definitions ED such that
PUED is equivalent to (P —{C})U L.

Proof. (Sketch) a) Termination: Tt suffices to prove that i) For every linear U-
rule S there exists a finite minimal linearizable upper portion U (see step 1)
and, ii) for every definition F; in ED, there exists a finite minimal (non-trivial)
tree Upg, whose leaf nodes are failing clauses, linear clauses or they can be folded
using clauses in ED (see step 4(a)).

i) Since a linear unfolding selection rule always selects an atom whose tran-
sitive closure is a linear program, the number of the IDB atoms of each clause
resulting from an unfolding step is less than or equal to the number of IDB
atoms of the unfolded clause. Moreover, since the number of IBD predicates is
finite then so is the tuples of predicates of the IDB atoms in the bodies of these
clauses. Therefore, there is a finite minimal linearizable upper portion of U.

ii) Since in the construction of Ug, we use the same U-selection rule S, and
S is uniquely determined by the set of IDB atoms in the body of that clause, we
have that the tree Ug, will also be constructed in a finite number of unfolding
steps.

b) Correctness: It is easy to see that all clauses in L are linear clauses. Tt is
sufficient to show that M (PUED) = M((P—{C})UL). Since all the leaf clauses
of MU (see step 3) are old clauses the folding operations performed this step
are correct and thus M(PU ED) = M((P — {C})ULC U ED). Moreover, since
the folded clauses in step 4b are new clauses and they all have been unfolded
at least once (as Ug, is non-trivial (step 4a)), all folding operations are again
correct. Thus, P U ED is equivalent to (P — {C'})U L.

Procedure 4.2 (Program Linearization procedure (PLP)).
Input : a piecewise linear program P and, a linear U-rule S.

QOutput : a set of Eureka definitions £ D and a set L of linear clauses.
Let i =0 and P, = P.
Let N L be the subset of all non-linear clauses in P.
while N L is non-empty do
- Select a minimally non-linear clause C' from N L.
- Apply CLP with input F;, C' and S and output L; and ED;.
- Let Py = {Pz — {C}) U L.
-Let NL=NL—-{C},andi=1i+ 1.
Let ED =, ED; for all 4, and L = |J; L; for all ¢.

Theorem 20. The program linearization procedure (PLP) applied to a piecewise
linear Datalog program P always terminates and returns a set of linear clauses
L and a set of new definitions ED such that «f NL is the set of all non-linear
clauses in P, then PU ED is equivalent to (P — NL)U L.

Proof. (Sketch) Termination: Procedure always terminates since there is a finite
number of clauses in NI and in each iteration of PLP exactly one clause in
N L is replaced by a set of linear clauses and the clause linearization procedure
always terminates.

Correctness: 1t is an immediate consequence if the correctness of the clause
linearization procedure.

5 The application of the algorithm

In fig. 1 and fig. 2 we can see the application of the procedure 4.1 on the clause
C4 of the program of example 3. The result of the application of the procedure is
the replacement of the clause Cy by the set of linear clauses {C1, Cya, Cha, Ci5}.
The underlined atoms in non leaf nodes are the atoms selected by the U-rule. Fig.
1, corresponds to step 1 of procedure 4.1. The loop found is used to introduce
the definition Dy (step 2). Dy is used to fold Ciq (step 3) as it is shown in fig. 2.
Finally, fig. 3 corresponds to step 4 (discovery of a linear definition for newl).

Cy: b(X,Y) « edb3(X,Z,W),c(Z,W,F) b(F,Y)

b(X,Y) « edb3(X, Z, W), edbd(Z, W, W1), d(W1,F), b(F,Y)

/\

C1io :

B(X,Y) « edb3(X, Z, W), edbd(Z, W, W1),
edb5(W1, F), b(F,Y)

B(X,Y) « edb3(X, Z, W), edbd(Z, W, W1),
edb6(W1,Q),edb7(Q, F), b(F,Y)

B(X,Y) « edb3(X, Z, W), edbd(Z, W, W1),
edb6(W1,Q),e(Q, F), b(F,Y)

b(X,Y) edb3(X, Z, W), edbd(Z, W, W1),
edb6(W1,Q), edb3(Q, R), d(R,F), b(F,Y)
|

Fig. 1. A minimal linearizable upper portion of a U-tree for < P, Cy >.

10

Cy: b(X,Y) « edb3(X,Z, W), c(Z,W, F),b(F,Y)

Cio: b(X,Y) « edb3(X,Z, W), edbd(Z, W, W1),d(W1,F), b(F,Y)
[

C
D, 11

Fig.2. A minimal upper portion of the U-tree in fig. 1, which can be folded using D;.

Dy : newl(X)Y) + d(X,Z2),b(Z2)Y)

Cra: newl(X,Y) « edb5(X, Z)ﬂ,Y) — edb6(X, W),

b(2,Y) e(W,2),6(2,Y)
Cia: newl(X,Y) + edb6(X, W), Cis @ newl(X,Y) + edb6(X, W),
edbT(W, Z),b(Z,Y) edb8(W,Q),d(Q,Z),b(Z,Y)
|
C
16 D,

Fig.3. A minimal (non trivial) upper portion of a U-tree for < P,D; > whose non
linear leaf clauses are foldable using FD.

6 Conclusions

The problem of transforming database logic programs (Datalog programs) into
equivalent linear programs, is investigated in this paper. We present both pos-
itive and negative results about linearizability of several syntactically defined
subclasses of programs and develop an algorithm, based on unfold/fold transfor-
mations, which transforms any piecewise linear logic program into an equivalent
linear program.

References

1. F. Afrati and S. Cosmadakis. Expressiveness of restricted recursive queries. In
Proc. 21st ACM Symp. on Theory of Computing, pages 113-126, 1989.

2. F. Afrati, S. Cosmadakis, and M. Yannakakis. On datalog vs. polynomial time. In
Proc. 10th ACM Symp. on Principles of Database Systems, pages 113-126, 1991.

3. F. Afrati, S. Cosmadakis, and M. Yannakakis. On datalog vs. polynomial time. J.
Computer and Systems Sciences, 51(2):117-196, 1995.

4. F. Afrati and C. H. Papadimitriou. The parallel complexity of simple chain queries.
In Proc. 6th ACM Symp. on Principles of Database Systems, pages 210-213, 1987.

11

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query
processing strategies. In Proc. ACM Conf. on Management of Data, pages 16-52,
1986.

S. A. Cook. An observation on time-storage trade off. J. Computer and System
Sciences, 9:308-316, 1974.

S. S. Cosmadakis and P. C. Kanellakis. Parallel evaluation of recursive rule queries.
In Proc. 5th ACM Symp. on Principles of Database Systems, pages 280-293, 1986.
M. Gergatsoulis. Logic program transformations: Rules and application strategies.
PhD thesis, Dept. of Computer Science, University of Athens, 1994. (In Greek).
M. Gergatsoulis and M. Katzouraki. Unfold/fold transformations for definite
clause programs. In Programming Language Implementation and Logic Program-
ming (PLILP’94), LNCS 844, pages 340-354. Spinger-Verlang, 1994.

Y. E. loannidis. A time bound on the materialization of some recursively defined
views. In Proc. 11th Int’l Conf. on Very Large Data Bases, pages 219-226, 1985.
J-L. Lasser, M. J. Maher, and K. Marriott. Unification revisited. In Jack Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587—
625. Morgan Kaufmann Publishers,Inc., 1988.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

J. F. Naughton. Data independent recursion in deductive databases. In Proc. 5th
ACM Symp. on Principles of Database Systems, pages 267-279, 1986.

J. F. Naughton and Y. Sagiv. A decidable class of bounded recursions. In Proc.
6th ACM Symp. on Principles of Database Systems, pages 227236, 1987.

A. Pettorossi and M. Proietti. Transformation of logic programs : Foundations and
techniques. The Journal of Logic Programming, 19/20:261-320, May/July 1994.
M. Proietti and A. Pettorossi. Synthesis of eureka predicates for developing logic
programs. In LNCS no. 432, Proc. of the 3rd European Symposium on Program-
ming, pages 306—-325. Springer-Verlag, 1990.

M. Proietti and A. Pettorossi. The loop absorption and the generalization strate-
gies for the development of logic programs and partial deduction. The Journal of
Logic Programming, 16(1 & 2):123-162, May 1993.

H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In Second
International Conference on Logic Programming, pages 127138, 1984.

J. D. Ullman and A. Van Gelder. Parallel complexity of logical query programs.
In Proc. 27th IEEE Symp. on Foundations of Comp. Sci., pages 438—454, 1986.
M. Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM
Symp. on Theory of Computing, pages 137-146, 1982.

This article was processed using the ¥TEX macro package with LLNCS style

12

