
On Transformations into Linear Database Logic
Programs�

Foto Afrati�� Manolis Gergatsoulis�� Maria Katzouraki�

� Dept� of Electrical and Computer Engineering�
National Technical University of Athens� ��� �� Athens� Greece�

e mail� afrati�softlab�ece�ntua�gr
� Inst� of Informatics � Telecom� N�C�S�R� 	Demokritos
�

��� �� A� Paraskevi Attikis� Greece
e mail� manolis�iit�nrcps�ariadne�t�gr

Abstract� We consider the problem of transformations of logic pro�
grams without function symbols database logic programs� into a special
subclass� namely linear logic programs� Linear logic programs are de�
�ned to be the programs whose rules have at most one intentional atom
in their bodies� a� We investigate linearizability of several syntactically
de�ned subclasses of programs and present both positive and negative
results i�e� demonstrate programs that cannot be transformed into a lin�
ear program by any transformation technique�� and b� We develop an
algorithm which transforms any program in a speci�c subclass namely
the piecewise logic programs into a linear logic program�

Keywords� program transformations� Datalog programs� program opti�
mization� deductive databases�

� Introduction

Logic program transformation has been the object of a large amount of research
activity recently� The program transformation methodology is often followed in
order to improve the e�ciency of the program�

In this paper� we consider logic programs without function symbols and in�
vestigate the problem of transforming them into a syntactically simple subclass�
namely the linear programs� In general� it is desirable� whenever possible� to
replace non�linear programs by equivalent linear programs� because there are
e�cient algorithms for the computation of the latter which do not extend to the
former� Linear programs have been widely studied ��� ��� �� both as concerns
their e�ciency and the possibility of transformation of non�linear programs into
linear� A program is linear if all the rules are linear� i�e�� there is at most one
intentional atom in the rule	s body�

As an example� consider the following program which checks if there is a path
joining two nodes of a graph

path�X�Y �� edge�X�Y ��
path�X�Y �� path�X�Z�� path�Z� Y ��

� This paper appears in �Perspectives of System Informatics� Proceedings of the �nd Inter�
national Adrei Ershov Memorial Conference� Akademgorodok� Novosibirsk� Russia� �����
LNCS ����� D	 Bj�rner� M	 Broy� I	 V	 Pottosin
eds�� pp ������ Springer�Verlag	

This program is equivalent to

path�X�Y �� edge�X�Y ��
path�X�Y �� edge�X�Z�� path�Z� Y ��

The second is a linear program� while the rst is not�
In this paper we investigate the problem of transformation into linear pro�

grams from two di�erent perspectives
 a� We discuss the expressivity of linear
programs by demonstrating the fact that this subclass of programs is quite rich
since it can describe some quite di�cult problems and� still� on the other end�
there are some very simple programs that are proven not to be linearizable �i�e��
they cannot be transformed into linear programs�� b� We present an algorithm
that transforms a specic subclass of programs� namely the piecewise linear pro�
grams� into linear programs� This algorithm still applies in the general case �i�e��
when function symbols are allowed��

The results in part �a� above are presented in a unied way to point out
certain limits that program transformations cannot go beyond� They are proven
after developing elaborate technical tools ��� �� ��� The results in part �b� are
proven by presenting an algorithm that uses unfold�fold techniques in a co�
ordinated form to arrive in a certain syntactically simpler program� On top on
techniques used in ���� ���� we had to develop some more technical tools to show
our results�

The results presented here are also interesting in view of the fact that they
attack� the problem of program transformation from the point of view of dening
a priori the subclass of programs we aim at�

The rest of this paper is organized as follows� After giving some prelimi�
naries in section �� we investigate linearizability of several syntactically dened
subclasses of programs and present both positive and negative results in section
�� In section �� we present our transformation algorithm� and in section � we see
an application of this algorithm� Finally� in section �� a conclusion is given�

� Preliminaries

In the following� we assume familiarity with the basic terminology of rst order
logic and logic programming �����

��� Datalog programs

Deductive database systems divide their information into two categories
 The
data which are represented by a predicate with constant arguments �all true
tuples are stored in the database� and the rules which dene new predicates in
terms of existing ones� Rules are Horn clauses without function symbols� The
data are often referred to as the EDB �extensional database� and the rules as the
IDB �intensional database�� A collection of rules is also called a Datalog program�

A predicate p depends on a predicate q i� there is a rule with p in its head
and either q or a predicate r which depends on q� in its body� An atom B is
called in the body of a clause C i� B is uniable with an atom in the body of C�

�

De�nition�� The transitive closure of a predicate p in a program P w�r�t� de�
duction is a set of clauses SP where
 C is in SP if its head predicate is p� or there
is a clause C � in SP and the head of C is called in the body of C��

De�nition�� A predicate p is a recursive predicate i� p depends on itself� Two
predicates p and q are mutually recursive i� p depends on q and q depends on p�
A predicate p is said to be a non�recursive predicate i� p is not recursive�

De�nition�� A Datalog program P is said to be peicewise linear i� for every
rule in P � at most one atom with a predicate which is mutually recursive with
the predicate in its head� is included in its body� P is said to be linear i� every
rule in P has at most one intensional atom in its body�

��� Unfold�fold transformations

Unfold�fold transformations���� ��� �� �� for denite clause programs were rst
formulated in ���� so as to preserve the meaning of programs� ThemeaningM �P �
of a logic program P is dened as
 M �P � � fAjA is a ground atom which is
a logical consequence of Pg� M �P � is identical to���� the least Herbrand model
of P � In the system in����� which is used in this paper� we start from an initial
program P�� and produce a sequence of programs by applying transformation
rules

De�nition�� An initial program P�� is a logic program satisfying the following
conditions

a� P� is divided into two disjoint sets of clauses� Pnew and Pold� The predicates
dened in Pnew are called new predicates while those dened in Pold are called
old predicates�

b� The new predicates appear neither in Pold nor in the bodies of the clauses
in Pnew�

De�nition�� Let C be a clause in Pl �l � ��
 A� B�K� where B is an atom
and K a conjunction of atoms� and C�� ���� Cm all clauses in Pl� whose heads
are uniable with B by most general uniers ��� ���� �m� The result of unfolding
C at B is the set fC��� ����� C

�
mg such that if Cj �� � j � m� is Bj � Qj and

Bj�j � B�j � then C�j is �A� Qj�K��j � Then� Pl�� � �Pl�fCg��fC��� ����� C
�
mg�

C is called the unfolded clause and C�� ����� Cm the unfolding clauses� The atom
Ai is called the unfolded atom�

De�nition�� Let C be the clause H � K�L in Pl and F the clause A � K�

in Pnew� where K�K �� and L are conjunctions of atoms� Then� the clause C�

H � A�� L is the result of folding C using F � if there exists a substitution �

satisfying the following conditions

a� K�� � K�
b� All variables in the body of F � which do not appear in the head of F are

mapped through � into distinct variables which do not occur in C��

�

c� Either the head predicate of C is an old predicate� or C has been unfolded
at least once in the sequence P�� P�� ����� Pl���

d� F is the only clause in P� whose head is unifyable with A�� Then� Pl�� �
�Pl�fCg��fC

�g� C is called the folded clause� and F is called the folding clause�
B�� is called the atom introduced by folding�

��� On the Complexity of Datalog programs

Because of their recursive nature� queries expressed in Datalog are harder to eval�
uate �from the point of view of parallel complexity�
 while rst�order queries are
in deterministic log�space ���� �even in AC� �� Datalog programs are sometimes
log�space complete for P

access�X� � source�X��
access�X� � access�Y��� access�Y��� triple�Y�� Y�� X��

The above program encodes the well�known path system accessibility problem
���
 the EDB predicates source and triple represent� respectively� source nodes
and accessibility conditions� triple�y�� y�� x� means that if y�� y� are accessible
from the source nodes� then so is x�

A large body of recent research has addressed the problems of nding e��
cient evaluation methods and compile�time optimization techniques for Datalog
programs �see ��� for a survey�� These studies usually concentrate on syntacti�
cally restricted Datalog programs� two common approaches are the following
 a�
Restrict the width �number of arguments� of the IDB predicates� b� Impose a
linearity condition on the rules �as� e�g�� in ���� ��� �����

It has been observed that linear Datalog programs can be evaluated in NC�

�cf� ��� ����� Moreover� all the Datalog programs currently known to be P�
complete �see ��� ��� ��� can be shown to require non�linear rules� because in
each case there is a �rst�order reduction from path system accessibility� The
question naturally suggested� then� is the following
 are there Datalog programs
in NC which are not equivalent to linear programs� This question has been
answered a�rmatively in ���
 There exist Datalog programs in NC� which are
not equivalent to any linear program �see theorems �� �� below�� Programs in
theorems �� �� belong to the class of elementary chain programs ���� ���

� Linearizable and non�linearizable Datalog Programs

In this section we focus on databases with only binary relations� such databases
can be thought of as directed graphs with edges labelled by EDB predicates�
We consider the special class of chain queries� which detect the existence of
certain paths� Among them there are queries inNC� requiring non�linear Datalog
programs����

��� Chain Queries and Linear Recursion

Let D � �D� r�� � � � � rn� be a database where each ri is binary� and let � �
fR�� � � � � Rng be an alphabet containing one letter Ri for each relation ri �we

�

use the same symbol�Ri� for the letter of � corresponding to ri and for the EDB
predicate denoting ri�� A path spelling a word Ri� � � �Ril � �� is a sequence
u�� � � � � ul�� of elements of D such that �uj� uj��� � rij � for j � �� � � � � l� if l � ��
the path spells the empty word� ��

For any language L � ��� the chain query QL obtained from L is dened as

QL�D� � f�u� v�
 there is a path of D from u to v� spelling a word in Lg�

Chain queries obtained from context�free languages are of particular interest

a context�free grammarG �generating a language L�G�� corresponds in a natural
way to a Datalog program computing the chain query QL�G�� We illustrate this
correspondence by an example

Example �� If G is I � R�IR�I j �� then QL�G� is computed by the program

I�X�Y �� R��X�Z��� I�Z�� Z��� R��Z�� Z��� I�Z�� Y ��
I�X�X��

Datalog programs as above are called elementary chain programs ����� We
now turn to chain queries which are linearizable�

Example �� The language L � fRi
�R

i
�R

j
�R

j
�
 i� j � �g can be shown to be not

linear context free� Still there is a linear Datalog program that expresses QL

I�X�Y �� P �X�Z�Z� Y ��
P �X�� Y�� X�� Y��� P �X �

�� Y
�
� � X�� Y��� R��X�� X

�
��� R��Y

�
� � Y���

P �X�� Y�� X�� Y��� P �X�� Y�� X
�

�� Y
�

��� R��X�� X
�

��� R��Y
�

� � Y���
P �X�� X�� X�� X���

The same is true for the language L � fRi
�R

i
�R

i
�
 i � �g

I�X�Y �� P �X�Z�Z� Y ��
P �X�� Y�� X�� Y��� P �X �

�� Y
�

� � X
�

�� Y��� R��X�� X
�

��� R��Y �

� � Y��� R��X�� X
�

���
P �X�� X�� X�� X���

It can be shown that the class of linearizable chain queries is closed under
general substitutions� A substitution is a mapping f from � to subsets of ���
it is extended to strings by dening f�Ri� � � �Ril� � f�i� � � ��il
 �ij � f�Rij �g�
and to languages by dening f�L� �

S
��L f����

Theorem	� If QL is linearizable� and Qf�Ri� is linearizable� i � �� � � � � n� then
Qf�L� is linearizable�

Corollary
� If QL� QL� are linearizable� then QL�L� � QLL� � QL� are lineariz�
able�

��� Non�linearizable Chain Queries in NC�

Consider the following context�free language L� � fR�� R�g�

L� � f�
 � has the same number of occurrences of R� and R�g�
By the results in ��� ��� the chain query QL� is in NC�

�

Theorem�� The chain query QL� is not linearizable�

Theorem�� If L is generated by one of the context�free grammars below� then
the chain query QL is not linearizable�

a� I � IR�I�R�IR�I�j j �� where j � ��
b� I � �IR��iIR�I�R�I�j j �� where i� j � ��

In ��� it is shown that the context�free languages in Theorem �� can be
accepted by pushdown automata satisfying the polynomial stack property� and
therefore the corresponding chain queries are in NC��

� Transforming piecewise linear to linear programs

In this section we show that a piecewise linear Datalog program can always be
transformed into an equivalent linear program using unfold�fold transformations�

Example �� Let P � fC�� C�� C�� C�� C�� C	� C
� C�� C�g be the following piece�
wise linear Datalog program

C�
 a�X�Y �� edb��X�Y ��
C�
 a�X�Y �� b�X�Z�� a�Z� Y ��

C�
 b�X�Y �� edb��X�Y ��
C�
 b�X�Y �� edb��X�Z�W �� c�Z�W�F �� b�F�Y ��
C�
 c�X�Y� Z�� edb��X�Y�W �� d�W�Z��
C	
 d�X�Y �� edb��X�Y ��
C

 d�X�Y �� edb��X�Z�� e�Z� Y ��
C�
 e�X�Y �� edb��X�Y ��
C�
 e�X�Y �� edb��X�Z�� d�Z� Y ��

P is not linear due to the non�linear clauses C� and C�� We will replace C�

with linear clauses� For this� we unfold C� at �c�Z�W�F �	� We obtain

C��
 b�X�Y �� edb��X�Z�W �� edb��Z�W�W��� d�W�� F �� b�F� Y ��

Now we introduce the following Eureka denition�

D�
 new��X�Y �� d�X�Z�� b�Z� Y ��

Then� we fold C�� using D�� We take

C��
 b�X�Y �� edb��X�Z�W �� edb��Z�W�W��� new��W�� Y ��

Now� we try to nd a �linear� recursive denition for the predicate �new�	�
For this� we unfold D� at �d�X�Z�	 using the clauses C	 and C
� We obtain

C��
 new��X�Y �� edb��X�Z�� b�Z� Y ��
C��
 new��X�Y �� edb��X�W �� e�W�Z�� b�Z� Y ��

Unfolding C�� at �e�W�Z�	 using C� and C� we get

C��
 new��X�Y �� edb��X�W �� edb��W�Z�� b�Z� Y ��
C��
 new��X�Y �� edb��X�W �� edb��W�Q�� d�Q�Z�� b�Z� Y ��

Folding C�� using D� we obtain

�

C�	
 new��X�Y �� edb��X�W �� edb��W�Q�� new��Q� Y ��

fC��� C��� C�	g is a linear program for �new�	� The new program is P� �
fC�� C�� C�� C�� C	�C
� C�� C�� C��� C��� C��� C�	g� P� is equivalent to P � fD�g�
Similarly� starting from P�� we can replace C� by an equivalent set of linear
clauses� In this way we obtain a linear program�

In the following�we present an algorithmbased on unfold�fold transformation
rules� which transforms a piecewise linear Datalog program into a linear program�
building on top on techniques used in �����

De�nition��� An unfolding selection rule �or U�rule� is a �partial� function
from clauses to atoms� The value of the function for a clause is a body atom
called the selected atom�

De�nition��� Let P be a program� C a clause and S a U�rule� An unfolding
tree �or U�tree for short� T for � P�C � via S is a tree labelled with clauses�
such that

a� C is the root label of T � and
b� If M be a node labelled byA � B�K� and B the atom selected by S�

Then� for each clause B� � L in P for which a most general unier � of B and
B� exists� there is a child node N of M labelled by
 �A� L�K���

We suppose that an unfolding selection rule S is uniquely determined by the
set of IDB atoms in the bodies of the clauses�

De�nition��� A nonempty tree T � is called an upper portion of a tree T i� the
following hold

a� The set of nodes of T � is contained in the set of nodes of T �
b� If N is a node of T � then every ancestor of N in T is also an ancestor of

N in T � and�
c� If N is in T � then any brother of N in T is also a brother of N in T ��
An upper portion of T consisting of a single node is called a trivial upper

portion�

For any program P and a clause C� if L is the set of leaves of an upper
portion of a U�tree for � P�C � via S� then���� M �P � fCg� � M �P � L��

De�nition��� Let P be a program� C a clause� and S a U�rule� A clause D
in a node of a U�tree T for � P�C � via S is said to be foldable i� there is an
ancestor F of D in T and a tuple I of IDB atoms such that the tuples of all IDB
atoms in the bodies of both C and F are instances of I� F is called a folding
ancestor of D�

De�nition��� Let P be a Datalog program� C a clause� and S a U�rule� The
U�tree T for � P�C � via S is said to be linearizable i� there is a nite upper
portion U of T such that each leaf clause of U is either a linear clause or a

�

foldable clause or a failing clause�� U is said to be a linearizable upper portion
of T �

De�nition��� A non�linear clause C in a piecewise linear program P is mini�
mally non�linear i� the transitive closure w�r�t� deduction� of any body atom B

of C� which is not mutually recursive with the head of C� is a linear program�

We can easily show that� for any piecewise linear Datalog program P � either
P is linear or there is �at least one� minimally non�linear clause C in P �

De�nition�	� A linear unfolding selection rule is an unfolding selection rule S
such that S always selects an IDB body atom �if any� of C with a predicate p
whose transitive closure is a linear program� otherwise S�C� is undened�

It is easy to see that if a clause C in a program P is minimally non�linear
then� there is always a body atom of C whose transitive closure in P w�r�t�
deduction is a linear program� Therefore� a linear U�rule is always dened for
any minimally non�linear clause�

Lemma�
� Let C be a minimally non�linear clause in P � fCg� S a linear
U�rule and U a U�tree for � P�C � via S� Then all non�linear clauses in the
set of leaves L of an upper portion of U are also minimally non�linear clauses
in P � L�

An immediate consequence of lemma �� is that when we unfold a minimally
non�linear clause C in a program P via an unfolding selection rule S� then S

is also dened for all non�linear clauses �if any� produced by this unfolding �as
these clauses are minimally non�linear��

Procedure ��� �Clause Linearization procedure 	CLP���
Input � a piecewise linear program P � a minimally non�linear clause C in P and
a linear U�rule S�
Output � a set of linear clauses L and a set of new predicate denitions ED�

�� Construct a linearizable U �tree T for � P�C � via S and select a minimal
linearizable upper portion U of T �

�� For every foldable leaf clause D of U construct a clause E with a fresh
predicate symbol in its head� and a tuple I of IDB atoms in its body such
that both� the tuple ID of the IDB atoms in the body of D and the tuple IF
of the IDB atoms in the body of the folding ancestor F of D� are instances
of� I� The head arguments of E is the minimal subset of the variables in
the body of E such that both D and F can be folded using E� Put E in
ED unless E di�ers from a clause in ED only in the names of their head
predicates or�and in the order of the arguments of their heads�

� A failing clause is a clause with a body atom that does not unify with the head of
any clause in the program� A failing clause can be removed from the program�

� The best choice is to use as I the most speci�c generalization���� of ID and IF � In
����� an algorithm to compute the most speci�c generalization of a set of expressions
is given�

�

�� Select the �possibly trivial� minimal upper portion MU of U so as each leaf
clause of MU is either a failing clause or a linear clause or it can be folded
using a clause in ED� Collect the set of leaves ofMU and perform all possible
foldings using the clauses in ED obtaining a set LC of clauses�

�� For each clause Ei in ED compute a corresponding linear denition LEi
as

follows
 Construct a �non�trivial� minimal U�tree UEi
for � P�Ei � via S

such that each leaf clause of UEi
is either a failing clause or a linear clause

or it can be folded using a clause in ED� Collect the set of leaves of UEi
and

perform all possible foldings using the clauses in ED obtaining LEi
�

�� Let L � LC � LE�
� �����LEn

�

All clauses in ED are by construction� non�linear clauses �see step ��� More�
over� it is easy to see that the linear selection rule S �used in step �� is always
dened for the clauses in ED in the program P � ED� This is due to the fact
that all clauses in ED are minimally non�linear in P �ED�

Theorem��� The clause linearization procedure 	CLP� applied to a minimally
non�linear clause C of a piecewise linear Datalog program P always terminates
and returns a set of linear clauses L and a set of new de�nitions ED such that
P �ED is equivalent to �P � fCg� � L�

Proof� �Sketch� a� Termination� It su�ces to prove that i� For every linear U�
rule S there exists a �nite minimal linearizable upper portion U �see step ��
and� ii� for every denition Ei in ED� there exists a nite minimal �non�trivial�
tree UEi

whose leaf nodes are failing clauses� linear clauses or they can be folded
using clauses in ED � see step ��a���

i� Since a linear unfolding selection rule always selects an atom whose tran�
sitive closure is a linear program� the number of the IDB atoms of each clause
resulting from an unfolding step is less than or equal to the number of IDB
atoms of the unfolded clause� Moreover� since the number of IBD predicates is
nite then so is the tuples of predicates of the IDB atoms in the bodies of these
clauses� Therefore� there is a nite minimal linearizable upper portion of U �

ii� Since in the construction of UEi
we use the same U�selection rule S� and

S is uniquely determined by the set of IDB atoms in the body of that clause� we
have that the tree UEi

will also be constructed in a nite number of unfolding
steps�

b� Correctness� It is easy to see that all clauses in L are linear clauses� It is
su�cient to show thatM �P�ED� � M ��P�fCg��L�� Since all the leaf clauses
of MU �see step �� are old clauses the folding operations performed this step
are correct and thus M �P �ED� � M ��P � fCg��LC �ED�� Moreover� since
the folded clauses in step �b are new clauses and they all have been unfolded
at least once �as UEi

is non�trivial �step �a��� all folding operations are again
correct� Thus� P �ED is equivalent to �P � fCg� � L�

Procedure ��� �Program Linearization procedure 	PLP���
Input � a piecewise linear program P and� a linear U�rule S�

�

Output � a set of Eureka denitions ED and a set L of linear clauses�
Let i � � and Pi � P �
Let NL be the subset of all non�linear clauses in P �
while NL is non�empty do

� Select a minimally non�linear clause C from NL�
� Apply CLP with input Pi� C and S and output Li and EDi�
� Let Pi�� � fPi � fCg�� Li�
� Let NL � NL � fCg� and i � i � ��

Let ED �
S
iEDi for all i� and L �

S
i Li for all i�

Theorem�� The program linearization procedure 	PLP� applied to a piecewise
linear Datalog program P always terminates and returns a set of linear clauses
L and a set of new de�nitions ED such that if NL is the set of all non�linear
clauses in P � then P �ED is equivalent to �P �NL� � L�

Proof� �Sketch� Termination� Procedure always terminates since there is a nite
number of clauses in NL and in each iteration of PLP exactly one clause in
NL is replaced by a set of linear clauses and the clause linearization procedure
always terminates�

Correctness� It is an immediate consequence if the correctness of the clause
linearization procedure�

� The application of the algorithm

In g� � and g� � we can see the application of the procedure ��� on the clause
C� of the program of example �� The result of the application of the procedure is
the replacement of the clause C� by the set of linear clauses fC��� C��� C��� C�	g�
The underlined atoms in non leaf nodes are the atoms selected by the U�rule� Fig�
�� corresponds to step � of procedure ���� The loop found is used to introduce
the denition D� �step ��� D� is used to fold C�� �step �� as it is shown in g� ��
Finally� g� � corresponds to step � �discovery of a linear denition for new���

C� b�X� Y �� edb��X�Z�W �� c�Z�W� F �� b�F�Y �

C�� b�X� Y �� edb��X�Z�W �� edb��Z�W�W���d�W��F��b�F�Y�
hhhhhhhh

��������
b�X� Y � � edb��X�Z�W �� edb��Z�W�W���

edb��W�� F �� b�F�Y �

b�X� Y �� edb��X�Z�W �� edb��Z�W�W���

edb	�W��Q�� e�Q� F �� b�F�Y �

�
�

����������
b�X� Y � � edb��X�Z�W �� edb��Z�W�W���

edb	�W��Q�� edb
�Q�F �� b�F�Y �

b�X� Y �� edb��X�Z�W �� edb��Z�W�W���

edb	�W��Q�� edb��Q�R��d�R�F��b�F�Y�

�

Fig� �� A minimal linearizable upper portion of a U�tree for � P�C� ��

��

C� b�X� Y �� edb��X�Z�W �� c�Z�W� F �� b�F�Y �

C�� b�X� Y �� edb��X�Z�W �� edb��Z�W�W���d�W��F��b�F�Y�

�

D�

C��

Fig� �� A minimal upper portion of the U�tree in �g� �� which can be folded using D��

D� new��X�Y �� d�X�Z�� b�Z�Y �

HHHH

��������
C�� new��X�Y � � edb��X�Z��

b�Z�Y �

C�� new��X�Y � � edb	�X�W ��

e�W�Z�� b�Z�Y �

�
�

�������������
C�� new��X�Y � � edb	�X�W ��

edb
�W�Z�� b�Z�Y �

C�� new��X�Y � � edb	�X�W ��

edb��W�Q��d�Q�Z��b�Z�Y�

�

D�

C��

Fig� �� A minimal non trivial� upper portion of a U�tree for � P�D� � whose non
linear leaf clauses are foldable using ED�

� Conclusions

The problem of transforming database logic programs �Datalog programs� into
equivalent linear programs� is investigated in this paper� We present both pos�
itive and negative results about linearizability of several syntactically dened
subclasses of programs and develop an algorithm� based on unfold�fold transfor�
mations� which transforms any piecewise linear logic program into an equivalent
linear program�

References

�� F� Afrati and S� Cosmadakis� Expressiveness of restricted recursive queries� In
Proc� ��st ACM Symp� on Theory of Computing� pages �������� �����

�� F� Afrati� S� Cosmadakis� and M� Yannakakis� On datalog vs� polynomial time� In
Proc� ��th ACM Symp� on Principles of Database Systems� pages �������� �����

�� F� Afrati� S� Cosmadakis� and M� Yannakakis� On datalog vs� polynomial time� J�
Computer and Systems Sciences� ������������� �����

�� F� Afrati and C� H� Papadimitriou� The parallel complexity of simple chain queries�
In Proc� �th ACM Symp� on Principles of Database Systems� pages �������� �����

��

�� F� Bancilhon and R� Ramakrishnan� An amateur
s introduction to recursive query
processing strategies� In Proc� ACM Conf� on Management of Data� pages ������
�����

�� S� A� Cook� An observation on time�storage trade o�� J� Computer and System
Sciences� ���������� �����

�� S� S� Cosmadakis and P� C� Kanellakis� Parallel evaluation of recursive rule queries�
In Proc� �th ACM Symp� on Principles of Database Systems� pages �������� �����

�� M� Gergatsoulis� Logic program transformations� Rules and application strategies�
PhD thesis� Dept� of Computer Science� University of Athens� ����� In Greek��

�� M� Gergatsoulis and M� Katzouraki� Unfold�fold transformations for de�nite
clause programs� In Programming Language Implementation and Logic Program�
ming 	PLILP
��� LNCS ���� pages �������� Spinger�Verlang� �����

��� Y� E� Ioannidis� A time bound on the materialization of some recursively de�ned
views� In Proc� ��th Int
l Conf� on Very Large Data Bases� pages �������� �����

��� J�L� Lasser� M� J� Maher� and K� Marriott� Uni�cation revisited� In Jack Minker�
editor� Foundations of Deductive Databases and Logic Programming� pages ����
���� Morgan Kaufmann Publishers�Inc�� �����

��� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� �����
��� J� F� Naughton� Data independent recursion in deductive databases� In Proc� �th

ACM Symp� on Principles of Database Systems� pages �������� �����
��� J� F� Naughton and Y� Sagiv� A decidable class of bounded recursions� In Proc�

�th ACM Symp� on Principles of Database Systems� pages �������� �����
��� A� Pettorossi and M� Proietti� Transformation of logic programs � Foundations and

techniques� The Journal of Logic Programming� �������������� May�July �����
��� M� Proietti and A� Pettorossi� Synthesis of eureka predicates for developing logic

programs� In LNCS no� ���� Proc� of the �rd European Symposium on Program�
ming� pages �������� Springer�Verlag� �����

��� M� Proietti and A� Pettorossi� The loop absorption and the generalization strate�
gies for the development of logic programs and partial deduction� The Journal of
Logic Programming� ��� � ����������� May �����

��� H� Tamaki and T� Sato� Unfold�fold transformations of logic programs� In Second
International Conference on Logic Programming� pages �������� �����

��� J� D� Ullman and A� Van Gelder� Parallel complexity of logical query programs�
In Proc� ��th IEEE Symp� on Foundations of Comp� Sci�� pages �������� �����

��� M� Y� Vardi� The complexity of relational query languages� In Proc� ��th ACM
Symp� on Theory of Computing� pages �������� �����

This article was processed using the LATEX macro package with LLNCS style

��

