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Abstract

Traditional implementation techniques for temporal logic programming languages
are based on the notion of canonical temporal atoms�clauses� Although such an ap�
proach is satisfactory for proving goals that refer to speci�c moments in time� it usually
leads to non�terminating computations when considering open�ended goals�

In this paper� we propose a new generalized proof procedure for implementing
branching time logic programming languages� The particular strength of the new proof
procedure� called CSLD�resolution� is that it can handle in a more general way open�
ended queries� without the need of enumerating all their canonical instances�

Keywords� Temporal Logic Programming� Branching Time� Proof Procedures�

� Introduction

Temporal logic programming languages �OM��� Org��� are recognized as natural and ex�
pressive formalisms for describing dynamic systems� and have been widely used in many
application areas such as program speci�cation and veri�cation �LO���� in modelling tem�
poral databases �Org�	� as well as in knowledge representation �LO�	� and temporal rea�
soning �Vil���


However� most temporal languages �Wad��� OM��� Hry��� OWD��� Bau��� Brz���
GRP�	� are based on linear 
ow of time� a fact that makes them unsuitable for certain
types of applications
 For example� as M
 Ben�Ari� A
 Pnueli and Z
 Manna have pointed
out in �BAPM���� branching time logics are necessary in order to express certain properties
of non�deterministic programs


In �RGP��b� RGP��a�� a new temporal logic programming language called Cactus is
presented� which is based on a tree�like notion of time� that is� every moment in time may
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have more than one next moments
 Cactus supports two main operators� the temporal
operator first refers to the beginning of time �or alternatively to the root of the tree�
 The
temporal operator nexti refers to the i�th child of the current moment �or alternatively�
the i�th branch of the current node in the tree�
 Notice that we actually have a family
fnexti j i � Ng of next operators� each one of them representing the di�erent next moments
that immediately follow the present one


As an example� consider the following Cactus program� which maps sequences of �a� and
�b� on a binary time tree as shown in �gure �


first sequence�� ���
next� sequence��a�R�� � sequence�R��

next� sequence��b�R�� � sequence�R��
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Figure �� A mapping of sequences of �a� and �b�s on a binary time tree

Traditional implementation techniques for temporal logic programming languages are
based on the notion of canonical temporal atoms�clauses �OW���
 Following this ap�
proach� we introduce a resolution�based proof procedure for Cactus programs� called BSLD�
resolution
 BSLD�resolution requires both program and goal clauses to be in the so called
canonical form� i
e
 all atoms in the clause should have a �possibly empty� sequence of
next operators applied to them� and the operator first should be in the front of this
sequence
 As it will be clear from the semantics of Cactus� canonical clauses are instances
in time of program clauses
 BSLD�resolution follows the ideas previously introduced in the
context of the linear time logic programming language Chronolog and its proof system�
TiSLD�resolution �OW���


Although this approach is satisfactory for proving goals that refer to speci�c moments in
time� it usually leads to non�terminating computations when considering open�ended goals

Motivated from this remark� we also developed a new resolution�based proof procedure for
Cactus programs called CSLD�resolution �Cactus SLD�resolution�
 The particular strength
of the new proof procedure� called CSLD�resolution� is that it can handle in a more general
way open�ended queries� without the need of enumerating all their canonical instances


CSLD�resolution can directly apply to Chronolog programs �Org���
 Moreover� it can
be easily extended to apply also to multi�dimensional logic programs �OD���
 TiSLD�
resolution �OW��� can be seen as a special case of CSLD�resolution


��



� The syntax of Cactus programs

The syntax of Cactus programs is an extension of the syntax of Prolog programs �Llo���

A temporal atom is an atomic formula with a number �possibly �� of applications of

temporal operators
 The sequence of temporal operators applied to an atom is called the
temporal reference of that atom
 A temporal clause is a formula of the form�

H � B�� ����� Bm

where H�B�� ����� Bm are temporal atoms and m � �
 If m � �� the clause is said to be a
unit temporal clause
 A Cactus program is a �nite set of temporal clauses
 A goal clause in
Cactus is a formula of the form � A�� ����� An where Ai� i � �� ���� n are temporal atoms


� Branching time logic

Branching time logic programming �BTLP�� is based on a relatively simple branching time
logic
 In branching time logic� time has an initial moment and 
ows towards the future in
a tree�like way
 The set of moments in time can be modelled by the set List�N � of lists of
natural numbers N 
 Thus� each node may have a countably in�nite number of branches
�next operators�
 The empty list � � corresponds to the beginning of time and the list �ijt�
�that is� the list with head i� where i � N � and tail t� corresponds to the i�th child of the
moment identi�ed by the list t
 Branching time logic uses the temporal operators first
and nexti� i � N 
 The operator first is used to express the �rst moment in time� while
nexti refers to the i�th child of the current moment in time
 The syntax of branching time
logic extends the syntax of �rst�order logic with two formation rules� if A is a formula then
so are first A and nexti A


We write BTL�N � for branching time logic with countably in�nite number of branches
starting from each node �i
e
 countably in�nite next operators�
 In practice� we are es�
pecially interested in branching time logics with �nite number n � N of next operators

The set of moments in time in these logics can be modelled by the set List�n� of lists of
numbers in the set S � fiji � N and � � i � n� �g
 We write BTL�n� for the branching
time logic with n next operators
 For example� BTL��� is the branching time logic with
two next operators� i
e
 from each node in the time tree start two branches


We also write Cactus�N � or Cactus�n� for the Cactus language based on BTL�N � or
BTL�n� respectively


��� Semantics of BTL�N � formulas

The semantics of temporal formulas of BTL�N � are given using the notion of branching
temporal interpretation
 Branching temporal interpretations extend the temporal interpre�
tations of the linear time logic of Chronolog �Org���


De�nition ���� A branching temporal interpretation or simply a temporal interpretation
I of the temporal logic BTL�N � comprises a non�empty set D� called the domain of the
interpretation� over which the variables range� together with an element of D for each
variable� for each n�ary function symbol� an element of �Dn � D�� and for each n�ary
predicate symbol� an element of �List�N � � �D

n

�
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In the following de�nition� the satisfaction relation j� is de�ned in terms of temporal
interpretations
 j�I�t A denotes that a formula A is true at a moment t in some temporal
interpretation I 


De�nition ���� The semantics of the elements of the temporal logic BTL�N � are given
inductively as follows�

�
 If f�e�� � � � � en��� is a term� then I�f�e�� � � � � en���� � I�f��I�e��� � � � � I�en����


�
 For any n�ary predicate symbol p and terms e�� � � � � en���

j�I�t p�e�� � � � � en��� iff hI�e��� � � � � I�en���i � I�p��t�

�
 j�I�t �A iff it is not the case that j�I�t A

�
 j�I�t A �B iff j�I�t A and j�I�t B

�
 j�I�t A �B iff j�I�t A or j�I�t B

	
 j�I�t �	x�A iff j�I�d�x��t A for all d � D where the interpretation I �d�x� is the same
as I except that the variable x is assigned the value d


�
 j�I�t first A iff j�I�� � A

�
 j�I�t nexti A iff j�I��ijt� A

If a formula A is true in a temporal interpretation I at all moments in time� it is said
to be true in I �we write j�I A� and I is called a model of A


Notice that� the above semantics de�ned for BTL�N �� obviously apply to BTL�n�


��� Axioms and Rules of Inference

The following axioms� many of which are similar to those adopted for the case of linear
time logics �Org���� refer to some important properties of the temporal operators
 In the
following� the symbol r stands for any of first and nexti


Temporal operator cancellation rules� The intuition behind these rules is that the
operator first cancels the e�ect of any other �outer� operator
 Formally�

r�first A�
 �first A�

Temporal operator distribution rules� These rules express the fact that the branching
time operators of BTL�N � distribute over the classical operators �� � and �
 Formally�

r��A�
 ��rA�
r�A � B�
 �rA�� �rB�
r�A � B�
 �rA�� �rB�

From the temporal operator distribution rules we see that if we apply a temporal operator to
a whole program clause� the operator can be pushed inside until we reach atomic formulas

This is why we did not consider applications of temporal operators to whole program clauses


��



Rigidness of variables� The following rule states that a temporal operator r can �pass
inside� 	�

r�	X��A�
 �	X��rA�

The above rule holds because variables represent data�values composed of function symbols
and constants which are independent of time �i
e
 they are rigid�


Temporal operator introduction rules� The following rule states that if A is a theorem
of BTL�N � then rA is also a theorem of BTL�N �


if � A then � rA

The validity of the above axioms is easily proved using the semantics of BTL�N �

As a �nal remark� we should note that in general nexti nextj A and nextj nexti A are
not equivalent


� Declarative Semantics

In this section� we present brie
y the main results concerning the declarative semantics of
Cactus programs
 As we will see� the usual minimal model and �xpoint semantics that
apply to logic programs� can be extended to apply to Cactus programs
 However� more
elaborated presentation of the declarative semantics is outside the scope of this paper and
is reported in a forthcoming one �RGP��c�


��� Minimal Herbrand Model Semantics

The declarative semantics of Cactus programs are de�ned in terms of the minimal temporal
Herbrand models
 In order to introduce temporal Herbrand models we need the notion of
canonical atoms and clauses�

De�nition ���� A temporal reference �sequence of temporal operators� of Cactus�n� is
said to be a canonical temporal reference if it is of the form first nexti� � � �nextik � for
some k � �
 A canonical temporal atom is an atom whose temporal reference is canonical

A canonical temporal clause is a temporal clause whose temporal atoms are canonical


Every temporal clause can be transformed into a �possibly in�nite� set of canonical
temporal clauses
 This can be done by applying first nexti� � � �nextik to the clause and
then using the axioms of branching time logic� presented in section �
�� to distribute
the temporal reference so as to be applied to each individual temporal atom of the clause�
�nally any super
uous operator is eliminated by applying the cancellation rules
 Intuitively�
a canonical temporal clause is an instance in time of the corresponding temporal clause


The notion of canonical atom�clause is very important since the value of a given clause
in a temporal interpretation of BTL�n�� can be expressed in terms of the values of its
canonical instances� as the following lemma shows�

Lemma ��� Let A be a clause and I a temporal interpretation of BTL�n�� Then j�I A if
and only if j�I At for all canonical instances At of A�

�	



As in the theory of classical logic programming �Llo���� the set UP generated by function
and constant symbols that appear in P � called Herbrand universe� is used to de�ne temporal
Herbrand interpretations
 Temporal Herbrand interpretations can be regarded as subsets of
the temporal Herbrand Base THBP of P � consisting of all ground canonical temporal atoms
whose predicate symbols appear in P and whose arguments are terms in the Herbrand
universe UP of P 
 A temporal Herbrand model is a temporal Herbrand interpretation�
which is a model of the program


In analogy with the theory of logic programming� the model intersection property holds
for temporal Herbrand models
 The intersection of all temporal Herbrand models denoted
byMMP � is a temporal Herbrand model� called the least temporal Herbrand model
 The fol�
lowing theorem says that the least temporal Herbrand model consists of all ground canonical
temporal atoms which are logical consequences of P 


Theorem ��� Let P be a Cactus program� Then MMP � fA � THBP jP j� Ag�

��� Fixpoint Semantics

A �xpoint characterization of the semantics of Cactus�n� programs is provided using a
closure operator that maps temporal Herbrand interpretations to temporal Herbrand inter�
pretations�

De�nition ���� Let P be a Cactus�n� program and THBP the temporal Hebrand base of
P 
 The operator TP � �THBP � �THBP is de�ned as follows�

TP �I� � fA j A � B�� ����� Bn is a canonical ground instance of a program clause in P
and fB�� ����� Bng 
 I g

It can be proved �RGP��c� that THBP is a complete lattice under the partial order
of set inclusion �
�
 Moreover� TP is continuous and hence monotonic over the complete
lattice �THBP �
�� and therefore TP has a least �xpoint
 The least �xpoint of TP provides
a characterization of the minimal Herbrand model of a Cactus�n� program� as it is shown
in the following theorem


Theorem ��� Let P be a Cactus�n� program� Then MMP � lfp�TP � � TP � ��

� Proof procedures for branching time logic programs

��� BSLD�resolution

Traditional implementation techniques for temporal logic programming languages are based
on the notion of canonical temporal atoms�clauses
 In �OW���� the authors propose a
resolution�type proof procedure for the linear�time logic programming language Chronolog�
called TiSLD�resolution� which requires program and goal clauses to be in canonical form

The same idea is behind MSLD�resolution� the proof procedure for multi�dimensional logic
programs �OD���


In this section we propose a resolution�type proof procedure for Cactus�n� programs�
called BSLD�resolution �Branching�time SLD�resolution�
 BSLD�resolution is an extension
of TiSLD�resolution� for branching time logic programs� and requires program and goal
clauses to be in canonical form


��



De�nition ���� Let P be a program in Cactus�n� and G be a canonical temporal goal
 A
BSLD�derivation of P �fGg consists of a �possibly in�nite� sequence of canonical temporal
goals G� � G�G�� ����� Gn� ��� a sequence C�� 



� Cn� 


 of canonical instances of program
clauses �called the input clauses�� and a sequence ���



� �n



 of most general uni�ers such
that� for all i the goal Gi�� is obtained from the goal�

Gi � � A�� ����� Am��� Am� Am��� ����� Ap

as follows�

�
 Am is a canonical temporal atom in Gi �called the selected atom�

�
 H � B�� �����Br is the input clause Ci�� in P �standardized apart from Gi��

�
 �i�� � mgu�Am� H�

�
 Gi�� is the goal� Gi�� � � �A�� �����Am��� B�� ����� Br� Am��� ����� Ap��i��

De�nition ���� A BSLD�refutation of P � fGg is a �nite BSLD�derivation of P � fGg
which has the empty goal clause � as the last clause of the derivation


De�nition ���� Let P be a program in Cactus�n�
 The success set of P is the set of all
canonical temporal atoms A in THBP such that P � f� Ag has a BSLD�refutation


De�nition ���� Let P be a program in Cactus�n� and G be a canonical temporal goal
 A
computed answer for P � fGg is the substitution obtained by restricting the composition
���������n to the variables of G� where ��� ��� ����� �n� is the sequence of the most general
uni�ers used in a BSLD�refutation of P � fGg


It easy to prove that BSLD�resolution is both sound and complete


Example ���� Consider the following program in Cactus����

��� first num����
��� next� num�s�X�� � num�X��
��� next� num�X� � next� num�Y�� num�Z�� sum�Z� Y� X��
��� sum��� Y� Y��
��� sum�s�X�� Y� s�Z�� � sum�X� Y� Z��

The above program assigns integer values to the nodes of the time tree through the pred�
icate �num� as follows� The value assigned to the root of the tree is �
 The value assigned
to the left child of a node� is the value of the node plus �
 Finally� the value assigned to
the right child of a node� is the sum of the value assigned to the node itself and the value
assigned to its left child
 A BSLD�refutation of the canonical temporal goal�

� first next� next� num�N�

is given below �the selected temporal atom in every step is the underlined one��

��



� first next� next� num�N�

�� � f N � s�N��g using clause ���
� first next� num�N��

�� � f N� � Xg using clause ���
� first next� num�Y�	 first num�Z�	 first sum�Z	Y	X��

�� � f Z � �g using clause ���
� first next� num�Y�	 first sum��	Y	X��

�� � f Y � s�Y��g using clause ���
� first num�Y��	 first sum��	s�Y��	X��

�� � f Y� � �g using clause ���
� first sum��	s���	X��

�	 � f X � s���g using clause ���
�

The value of the variable N in the goal� is given by the composition of the substitutions
��� ����� �	 obtained in the above process
 This value is� N 
 s�s����


��� Open�ended goal clauses

When one or more temporal atoms included in a goal clause are not canonical� we say that
the goal clause is open�ended
 Following the approach of M
 Orgun and W
 Wadge �OW���
OD���� we can see an open�ended goal clause G as a representation of the in�nite set of all
canonical goal clauses corresponding to G
 In this way� open�ended goal clauses are used to
imitate non�terminating computations
 An implementation strategy for executing an open�
ended goal clause is by enumerating and evaluating �one by one� using BSLD�resolution�
the set of all canonical instances of the goal clause �e
g
 by traversing in a breadth��rst way
the time�tree�
 It is obvious that the evaluation of an open�ended goal in this way� is in
fact a generate�and�test procedure
 Although this treatment of open�ended goal clauses is
satisfactory for a wide range of applications� there are cases in which a more general proof
procedure which can operate directly on open�ended goal and program clauses� is required

For example� if our program in Cactus���� consists of exactly the unit program clause
�next� p�a��� then the open�ended goal clause �� p�X��� will initiate a non�terminating
computation in which all canonical instances of this goal� �� first p�X��� �� first

next� p�X��� �� first next� p�X��� �� first next� next� p�X�� and so on� will be
generated and tested
 In this way� we will never obtain the �obvious� correct answer which
says that �next� p�a�� is a logical consequence of the program
 Moreover� generating and
evaluating all canonical instances of an open�ended goal clause� often requires the evaluation
of a speci�c �sub�goal more than once


��� CSLD�resolution

In this section� we attempt to drop the requirement that program and goal clauses should
be in canonical form� by de�ning a new proof procedure� called CSLD�resolution


In the following� we often require that temporal references are in their normal form
 We
say that a temporal reference T is in normal form� if either the operator first does not
appear in T or there is only one occurrence of first in T � which is the �rst operator of T 

Every temporal reference T can be transformed in its normal form normal�T � by eliminating
all operators appearing before the �nal occurrence of first
 Because of the operator

��



cancellation rules� it is obvious that for every formula A we have� T A
 normal�T � A

Moreover� by T� T� we denote the temporal reference obtained by putting the temporal

reference T� after the temporal reference T�
 We say that T� T� is the composition of the
temporal references T� and T�


Example ���� The temporal reference first next� is the normal form of the temporal
reference next� first next� first next�


Notice that the composition of two temporal references which are in normal form is
not necessarily in normal form
 Nevertheless� we can easily prove that� normal�T� T�� �
normal�normal�T�� T�� � normal�T� normal�T��� � normal�normal�T�� normal�T���


De�nition ���� Let A� and A� be two temporal atoms� such that A� � R� A�
� and

A� � R� A
�
� where A

�
� and A

�
� are classical atoms and R�� R� are �possibly empty� temporal

references in normal form
 Let �t � �T� �� S�� where T � S are temporal references in normal
form and � is a substitution�
 Then �t is said to be a temporal uni�er of A� and A� i�
T R� A

�
�� � S R� A

�
�� and both T R� and S R� are also in normal form


De�nition ���� A temporal uni�er �t � �T� �� S� of two temporal atoms A� and A�� is
said to be a most general temporal uni�er of A� and A� �we write �

t � mgut�A�� A��� i� for
any uni�er �t � �T �� �� S�� of A� and A� there is a temporal substitution �t � �T ��� �� S���
such that � � ��� T � � T �� T � and S� � S�� S


Example ���� Let �next� p�f�X�� ��� and �next� next� next� p�f�Y�� W�� be two temporal
atoms
 Then �t � �next� next� next�� fX��� Y���W��g� next�� is a temporal uni�er of
these atoms� while� �t � �next� next�� fX�Y� W��g� �� is a most general temporal uni�er of
the above atoms


It is easy to prove the following properties of temporal uni�ers�

�
 �T� �� S� is a �most general� temporal uni�er of A� and A� i� �S� �� T � is a �most
general� temporal uni�er of A� and A�


�
 If �t � �T� �� S� is a most general temporal uni�er� then at least one of the temporal
references T and S� is empty


�
 Suppose that �T� �� S� is a temporal uni�er of two temporal atoms A� and A� and
�T �� ��� S�� � mgut�A�� A��
 Then there is a common pre�x F of T and S such that�
F T � � T and F S� � S
 This common pre�x is the maximal one


De�nition ��	� Let P be a Cactus�n� program and G a temporal goal
 A CSLD�derivation
of P �fGg consists of a �possibly in�nite sequence� of temporal goals G� � G�G�� ����� Gn� ����
a sequence C�� 



� Cn� 


 of program clauses �called input clauses�� and a sequence
�T�� ��� S��� 



� �Tn� �n� Sn�� 



 of most general temporal uni�ers such that� for all i�
the goal Gi�� is obtained from the goal�

Gi � � A�� ����� Am��� Am� Am��� ����� Ap

as follows�

�The triple �T� �� S� is called a temporal substitution
�By �� we denote the empty temporal reference


��



�
 Am is a temporal atom in Gi �called the selected atom�

�
 H � B�� �����Br is the input clause Ci�� �standardized apart from Gi��

�
 �ti�� � mgut�Am� H� � �Ti��� �i��� Si���

�
 Gi�� is the goal
��

Gi�� � � �Ti�� A�� ����� Ti�� Am��� Si�� B�� ����� Si�� Br� Ti�� Am��� ����� Ti�� Ap��i��

De�nition ��
� A CSLD�refutation of P � fGg is a �nite CSLD�derivation of P � fGg
which has the empty goal clause � as the last clause of the derivation


De�nition ���� Let P be a program in Cactus�n� and G a temporal goal
 A computed
answer for P � fGg is a pair � �� T 	 of a substitution � and a temporal reference T such
that � is the substitution obtained by restricting the composition �������n to the variables
of G� and T � normal�Tn Tn�� ���� T��� where �T�� ��� S��� ����� �Tn� �n� Sn� is the sequence
of the most general temporal uni�ers used in a CSLD�refutation of P � fGg


De�nition ����� Let P be a program in Cactus�n� and G � � A�� �����An a temporal
goal
 A pair � �� T 	� of a substitution �� and a temporal reference T � is said to be a
correct answer for P � fGg if 	�T �A� � ����� An��� is a logical consequence of P 


Notice that� if T �A� � ���� � An�� is not canonical� then all its canonical instances are
logical consequences of P 


Example ���� Consider the program de�ning the predicate �num� in example �
�� and
suppose that we want to evaluate the following goal clause�

� num�N�

A CSLD�refutation which corresponds to the goal clause � first next� next� num�N�

evaluated in example �
� using BSLD�resolution� is as follows�

� num�N�

T� � next�
�� � f N � s�N��g using clause ���
S� � �

� num�N��

T� � next�
�� � f N� � Xg using clause ���
S� � �

� next� num�Y�	 num�Z�	 sum�Z	Y	X��

T� � first

�� � f Z � �g using clause ���
S� � �

�We suppose that the temporal reference of each atom is transformed into normal form after the appli

cation of the temporal uni�er


��



� first next� num�Y�	 first sum��	Y	X��

T� � �
�� � f Y � s�Y��g using clause ���
S� � first

� first num�Y��	 first sum��	s�Y��	X��

T� � �
�� � f Y� � �g using clause ���
S� � �

� first sum��	s���	X��

T	 � �

�	 � f X � s���g using clause ���
S	 � first

�

Thus the computed answer is� 
f N � s�s����g	 first next� next�� where first

next� next� 
 T	 T� T� T� T� T�� and f X � s�s����g � �����������	


��� Soundness of CSLD�resolution

CSLD�resolution is a sound proof procedure�

Lemma ��� Let P be a program in Cactus�n� and G a temporal goal� Then every computed
answer for P � fGg is a correct answer for P � fGg�

Corollary ��� If A is a canonical ground temporal atom and P � f� Ag has a CSLD�
refutation then A �MMP �

Nevertheless� the completeness of CSLD�resolution� as formulated above� depends on
the choice of the computation rule as it is shown in the following example�

Example ���� Consider the following program P in Cactus����

��� first p � r�

��� first q � s�
��� first r�
��� first next� s�

It is easy to see that �first p � first q� is a logical consequence of P 
 Nevertheless�
there are problems in �nding a refutation for the goal clause�

� first p	 first q�

Consider for example the derivation�
� first p	 first q�

f�� fg� �g using clause ���
� r	 first q

f�� fg� �g using clause ���
� r	 s

ffirst� fg� �g using clause ���
� first s

FAIL


��



It is easy to see that� if we select �r� instead of �first q� in the second step� the
derivation will �nally succeed
 Thus the proof of this goal depends on the computation
rule


The problem in the above failed derivation is due to the fact that although the proof
of the subgoal �r� should be independent to the proof of the subgoal �s�� the fact that they
co�exist in the goal �� r	 s� imposes that they must be true at the same moment in time

The problem arises when it happens to mix in the same subgoal� bodies of clauses whose
heads are in canonical form but their bodies contain open�ended atoms


��� Generalized CSLD�resolution

We can de�ne a �family of� computation rule�s� under which CSLD�resolution as formulated
in section �
�� is complete
 Nevertheless� we are interested in a proof procedure whose
completeness does not depend on the choice of the computation rule
 For this reason� we
rede�ne CSLD�resolution by generalizing the notion of goal


A multi�goal �or m�goal for short� is an expression of the form�
� fA���� A���� �����A��k�g� fA���� A���� ����� A��k�g� ���������� fAm��� Am��� ����� Am�kmg

where Ai�j are temporal atoms
 Each set fAl��� Al��� ����� Al�klg� of atoms is said to be a
temporal group
 Intuitively� each group in a m�goal represents an ordinary goal clause
 The
di�erence between a m�goal and an ordinary goal is that in the later the di�erent groups are
timely independent �i
e
 they may be true at di�erent time moments�
 The exact meaning
of an m�goal will become clear from the de�nition of correct answer that follows


De�nition ����� If � �� T�� T�� ����� Tp 	 is a tuple of a substitution � and a sequence of
temporal references Ti for i � �� ����� p� and G is an m�goal of the form� GP�� GP�� ����� GPp�
where GP�� ����� GPp are groups� then �T� GP�� T� GP�� ����� Tp GPp�� is called a temporal
m�instance of G
 If it is canonical� then it is called a canonical temporal m�instance of G


De�nition ����� Let P be a program in Cactus�n� and G �� GP�� ����� GPp a m�goal
 A
�p����tuple � �� T�� ����� Tp 	� where T�� ����� Tp are temporal references and � a substitution�
is said to be a correct m�answer for P � fGg if P j� 	�Ti GPi�� for i � �� ���� p


De�nition ����� Let P be a Cactus�n� program and G an m�goal
 A CSLD�derivation
of P � fGg consists of a �possibly in�nite sequence� of m�goals G� � G�G�� ����� Gn� ����
a sequence C�� 



� Cn� 


 of program clauses� a sequence �T�� ��� S���



� �Tn� �n� Sn��




 of most general temporal uni�ers� and a sequence of tuples �called answer tuples�
� ��� R

�
�� R

�
�� ������ 	� 




� � �n� R

n
� � R

n
� � ������ 	� such that for all i� the m�goal Gi�� is

obtained from the m�goal�
Gi � � GP�� ����� GPm��� GPm� GPm��� ����� GPp


as follows�

�
 A is a temporal atom in a group GPm of Gi �A is called the selected atom� and GPm
is called the selected group�

�
 H � B�� �����Br is the input clause Ci�� �standardized apart from Gi��

�
 mgut�A�H� � �Ti��� �i��� Si���

��



Then Gi�� is� �GP�� ����� GPm��� GP
�
m� GPm��� ����� GPp� GPnew�� such that� if H is canon�

ical then GP �
m � Ti�� �GPm � fAg�� and GPnew � fSi�� B�� ����� Si�� Brg� otherwise

GP �
m � �Ti�� �GPm � fAg�� � fSi�� B�� ����� Si�� Brg and GPnew � �

The corresponding answer tuple is � �i��� �� ����� �� Ti��� �� ���� 	� in which all temporal

references are �� except the reference corresponding to the selected group� which is Ti��


De�nition ����� A CSLD�refutation of P � fGg is a �nite CSLD�derivation of P � fGg
which has the empty m�goal � as the last clause of the derivation


De�nition ����� Let P be a program in Cactus�n� and G an m�goal consisting of k groups

Suppose that there is a CSLD�refutation of P �fGg of length n� and let � ��� R

�
�� R

�
�� ���� 	�

� ��� R
�
�� R

�
�� ���� 	� 




� � �n� R

n
� � R

n
� � ���� 	 be the sequence of answer tuples
 Then� a

computed m�answer for P � fGg is the �k����tuple � �� T�� ����� Tk 	� where T�� ����� Tk
are temporal references and � a substitution� such that � is obtained by restricting the
composition �������n to the variables of G� and Ti � Rn

i � R
n��
i � ����� R�

i for � � i � k


��� Soundness and Completeness of CSLD�resolution

The soundness lemma �
� also hold for the revised CSLD�resolution� i
e
 all computed m�
answers are also correct m�answers
 Moreover� the revised CSLD�resolution is also complete


Example ���� The derivation of example �
� proceeds now as follows�
� ffirst p	 first qg�
f�� fg� �g using clause ���
� frg	 ffirst qg
f�� fg� �g using clause ���
� frg	fsg
ffirst� fg� �g using clause ���
� fsg
ffirst next�� fg� �g using clause ���
�


It is easy to see that for any choice of the computation rule we reach the same result


The completeness of CSLD�resolution is expressed through the following lemmas and
theorems


Lemma ��� Let P be a program in Cactus�n� and A � MMP � Then P � f� Ag has a
CSLD�refutation�

Theorem ��� Let P be a program in Cactus�n� and A a canonical ground temporal atom�
Then� A �MMP i� there is a CSLD�refutation for P � f� Ag�

In the following �completeness� theorem� we show that every canonical instance of a
correct m�answer is also a canonical instance of a computed m�answer


Theorem ��� 
Completeness� Let P be a program in Cactus�n�� and G a temporal m�
goal of the form � GP�� GP�� �����GPp� If there is a correct m�answer � �� T�� T�� ���� 	 for
P � fGg� then for every canonical m�instance G� of �T� GP�� T� GP�� ����� Tp GPp��� there
exists a computed m�answer � ��R�� R�� ���� 	 for P � fGg such that G� is also a canonical
m�instance of �R� GP�� R� GP�� ����� Rp GPp���

The independence from the speci�c choice of the computation rule� can also be shown


��



� Conclusions

Cactus is a temporal logic programming language� which is based on a tree�like notion
of time� that is� every moment in time may have more than one next moments
 Cactus
supports the temporal operator first which refers to the beginning of time �or alternatively
to the root of the tree� and a set of temporal operators nexti each one referring to a child
of the current moment �or alternatively� to a branch of the current node in the tree�


In this paper� we work on resolution�type proof procedures for Cactus programs
 We
�rst introduce BSLD�resolution� a proof procedure which requires program and goal clauses
to be in canonical form
 Then� we de�ne a generalized proof procedure� called CSLD�
resolution
 The particular strength of CSLD�resolution� is that it can handle in a more
general way open�ended queries� without the need of enumerating all the canonical instances
of the goal clause
 Moreover� program clauses can be directly used in a refutation� without
the need to consider their canonical instances
 In this sense� CSLD�resolution generalizes
previously introduced proof procedures for linear time logic languages� such as Chronolog
and Chronolog�Z� �Org��� OWD��� as well as for multidimensional logic programming
languages �OD���
 It is easy to see that CSLD�resolution can directly apply to Chronolog
programs� which can be seen as programs in Cactus���
 Moreover� CSLD�resolution can be
easily extended for the case of multidimensional logic programs


The generality of CSLD�resolution could lead to e�cient implementations for Cactus
programs as well as for Chronolog programs
 The main source of improvements in e�ciency
comes from the fact that CSLD�resolution solves open�ended goals directly� i
e
 it does
not enumerate all canonical instances of an open�ended goal
 Thus a CSLD�refutation
corresponds to a �possibly in�nite� set of BSLD�refutations


Currently� an experimental WAM�based implementation of Cactus proof system� based
on CSLD�resolution� is under development
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