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Abstract

In this paper, we consider program transformation techniques for branching-time
logic programs. We define a set of unfold/fold transformation rules and present suffi-
cient conditions to ensure their correctness. Then, using the proposed transformation
rules we develop an algorithm which transforms a wide class of Cactus programs into a
continuation passing style form.
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1 Introduction

A lot of research effort has been devoted recently in developing logic programming languages
which incorporate, in one or another way, the notion of time [Org91, OM94, Bau93, RGP97b,
GRP97]. Most of the temporal logic programming languages presented in the literature are
based on linear flow of time [OM94, Hry93, OWD93, Bau93, Brz91, Brz93, GRP96]. However,
in [RGP97b, RGP97a, GRP97] a temporal logic programming language called Cactus, which
is based on a tree-like notion of time, was introduced. In Cactus, there is an initial moment
in time and every moment may have more than one next moments.

Temporal logic programming languages are recognized as natural and expressive for-
malisms for describing dynamic systems. In particular, branching-time logic programming
is useful for describing non-deterministic computations as well as computations that involve
the manipulation of trees.

On the other hand, program transformation techniques have been widely used in pro-
gram synthesis [ST84, PP94b], program optimization [PP95, Ger94, AGK96], program spe-
cialization [BCD90] and partial evaluation (partial deduction) [LS91, PP93]. Program trans-
formation systems, based on unfold/fold rules, have been developed for functional pro-
grams [BD77], as well as for definite and normal (programs permitting negative subgoals)
logic programs [TS84, TS86, KK90, BC93, PP94a, GK94, Sek91, Sek93]. For good surveys
on program transformation of definite and normal logic programs one may refer in [PP97,
PP94a].
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In this paper we define a program transformation system for branching-time (Cactus)
logic programs and present sufficient conditions for its correctness. The main rules of the
system namely unfolding and folding are extensions of the corresponding rules [TS86, Ger94]
for definite clause programs. A transformation rule, called temporal shift which takes into
account the properties of time, is also presented.

As an application of the proposed transformation system, we develop an algorithm which
compiles a wide class of branching time logic programs into a continuation passing style form.

The rest of the paper is organized as follows: in section 2, we briefly present the branching-
time logic programming language Cactus. In section 3, we introduce the transformation rules,
and in section 4 we propose sufficient conditions for their correctness. In section 5, based on
the transformation system we develop a continuation passing style transformation algorithm
for Cactus programs. Finally, section 6 concludes the paper.

2 The Cactus branching-time logic programming language

The syntax of Cactus programs extends the syntax of Definite Clause programs [Llo87]. A
Cactus program is a finite set of temporal clauses. A temporal clause is a formula of the form:

H ← B1, . . . , Bm

where m ≥ 0 and H, B1, . . . , Bm are temporal atoms. A temporal atom is a classical atom
preceded by a (possibly empty) sequence of temporal operators. The sequence of operators
of a temporal atom is called the temporal reference of that atom. If m = 0 then the clause
is said to be a unit temporal clause.

A goal clause in Cactus is a formula of the form ← A1, . . . , An where Ai, i = 1, ..., n are
temporal atoms.

Cactus supports two temporal operators: the temporal operator first which refers to the
beginning of time (or alternatively to the root of the time-tree), and the temporal operator
nexti which refers to the i-th child of the current moment (or alternatively, the i-th branch
of the current node in the tree). Notice that we actually have a family {nexti | i ∈ N} of
next operators, each one of them representing a different next moment that immediately
follows the present one.

Example 2.1. Consider the following Cactus program

p(0).
next0 p(s(X)) ← p(X).
next1 p(s(X)) ← next0 p(X).

which defines the non-deterministic predicate ‘p’. The sets of values of the argument of ‘p’
for which the predicate is true at each moment in the time tree are shown in figure 1.

For example the query

← first next0 next1 p(X).

will return the following answers (values of the variable ‘X’):

X = 0

X = s(0)
X = s(s(0))
X = s(s(s(0)))
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Figure 1: Part of the time-tree and the corresponding sets of values (in Arabic style num-
bering) of the argument of ‘p’ for which the predicate ‘p’ is true.

A temporal reference T is said to be canonical if the leftmost operator of T is first.
The semantics of Cactus programs are defined in [RGP97b, GRP97]. It is important to

note here that a Cactus program P has a least Herbrand model M(P ) which comprises all
canonical temporal atoms which are logical consequences of P .

In the following sections we will also use the notion of temporal unifiers. Temporal unifiers
have been introduced in [GRP97], and extend the notion of unifier in classical logic. Temporal
unification requires that temporal references are in normal form. We say that a temporal
reference T is in normal form, if either the operator first does not appear in T or there
is only one occurrence of first in T , which is the leftmost operator in T . Every temporal
reference T can be transformed into normal form normal(T ) by eliminating all operators
appearing before the rightmost occurrence of first. The axioms of branching time logic of
Cactus [RGP97b] ensure that for every formula A we have: T A ↔ normal(T ) A. Intuitively,
normalization consists in discarding redundant temporal operators. For example, the normal
form of the temporal atom next2 first next0 first next1 A is first next1 A.

Finally, by T1 T2 we denote the temporal reference obtained by putting the temporal
reference T1 before the temporal reference T2. We say that T1 T2 is the composition of the
temporal references T1 and T2.

Definition 2.1 (Temporal Unifier). Let A1 and A2 be two temporal atoms, such that
A1 = R1 A′

1 and A2 = R2 A′

2 where A′

1 and A′

2 are classical atoms and R1, R2 are (possibly
empty1) temporal references in normal form. Then θt = (T, θ, S), where T and S are
temporal references in normal form and θ is a substitution, is said to be a temporal unifier
of A1 and A2 iff T R1 A′

1θ = S R2 A′

2θ and both T R1 and S R2 are also in normal form.
Two temporal atoms A1 and A2 are said to be temporally unifiable iff they have a temporal
unifier.

Definition 2.2 (Most general Temporal Unifier). A temporal unifier θt = (T, θ, S) of two
temporal atoms A1 and A2, is said to be a most general temporal unifier of A1 and A2

(we write θt = mgut(A1, A2)) iff for every unifier σt = (T ′, σ, S′) of A1 and A2, there is a
temporal substitution ξt = (T ′′, ξ, S′′) such that σ = θξ, T ′ = T ′′ T , and S′ = S′′ S.

1We denote an empty temporal reference by ǫ.
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It is easy to see that (T, θ, S) = mgut(A1, A2) iff (S, θ, T ) = mgut(A2, A1). Moreover, if
two temporal atoms are temporally unifiable, they have a most general temporal unifier.

3 The transformation Rules

In general, the transformation process starts from a program P0, called the initial program,
and produces a sequence of programs P0, P1, . . . , Pi, . . ., called a transformation sequence,
such that each program in the sequence is obtained by applying a transformation rule to the
preceding one.

Definition 3.1 (Initial Program). An initial program P0, is a Cactus program satisfying
the following conditions:

1. Let P be the set of predicates of P0. Then P is divided into two disjoint sets Pp and
Pt. The predicates in Pp are called primitive predicates while the predicates in Pt are
called transformable predicates.

2. Transformable predicates do not appear in the bodies of the clauses defining primitive
predicates.

Definition 3.1 implies that an initial program P0 is divided into two disjoint sets of clauses,
P

p
0 and P t

0. P
p
0 comprises the definitions of the primitive predicates while P t

0 comprises the
definitions of the transformable predicates. Will see in the following that the transformation
rules are applied only to clauses defining transformable predicates. As a consequence, each
program Pl, with l ≥ 0, in the transformation sequence consists also of two distinct sets of
clauses P

p
l and P t

l . Since no transformation rule is applied to the clauses defining primitive
predicates, P

p
l is identical to P

p
0 .

Although in practice, new predicate definitions (Eureka definitions) are often introduced
during the transformation process, these definitions are considered as part of the initial
program.

Example 3.1. Let P0 = {1, 2, 3, 4, 5, 6} be the following Cactus program:

(1) even p(X) ← p(X), even(X).

(2) p(0).
(3) next0 p(s(X)) ← p(X).
(4) next1 p(s(X)) ← next0 p(X).

(5) even(0).
(6) even(s(s(X))) ← even(X).

P0 can be seen as an initial program with P t
0 = {1, 2, 3, 4} and P

p
0 = {5, 6}. Notice that

the clauses {2, 3, 4} define the predicate ‘p’ as in example 2.1. Clauses {5, 6} define the
predicate ‘even’ which is true for the even numbers. Finally, ‘even p’ is true at a moment
in time, only for the even values of the argument for which ‘p’ is true at the same moment.

Definition 3.2 (Unfolding). Let C be a clause in P t
l of the form

C : A ← M,B,N
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where A, B are temporal atoms and M,N are (possibly empty) conjunctions of temporal
atoms. Let D1, . . . , Dm be all clauses in a program Pk, with 0 ≤ k ≤ l, whose heads are
temporally unifiable with B by the most general temporal unifiers θt

1, . . . , θ
t
m respectively. If

(at least) one of the following conditions holds:

1. A, M , and N are canonical.

2. B is not canonical.

3. For each clause Dj , with 1 ≤ j ≤ m, either all body atoms of Dj are canonical, or the
head of Dj is not canonical.

Then, the result of unfolding C at B consists in replacing C in Pl by the set of clauses
{C ′

1, . . . , C
′

m} constructed as follows: for each j, with 1 ≤ j ≤ m, if
Dj : Bj ← G

where G is a (possibly empty) conjunction of temporal atoms, then
C ′

j : (Tj A ← Tj M,Sj G,Tj N)θj

where θt
j = (Tj , θj , Sj) = mgut(B, Bj). C is called the unfolded clause and C1, . . . , Cm are

called the unfolding clauses.

Example 3.2 (Continued from example 3.1). Unfolding clause (1) at ‘p(X)’ using clauses
{2, 3, 4} we get:

(7) even p(0) ← even(0).
(8) next0 even p(s(X)) ← p(X), next0 even(s(X)).
(9) next1 even p(s(X)) ← next0 p(X), next1 even(s(X)).

Unfolding clause (7) using (5) we get:

(10) even p(0).

Unfolding clause (8) at ‘next0 even(s(X))’ using (6), and clause (9) at ‘next1 even(s(X))’
using (6) we get:

(11) next0 even p(s(s(X))) ← p(s(X)), next0 even(X).
(12) next1 even p(s(s(X))) ← next0 p(s(X)), next1 even(X).

Unfolding clause (11) at ‘p(s(X))’ using {3, 4} we get:

(13) next0 next0 even p(s(s(X))) ← p(X), next0 next0 even(X).
(14) next1 next0 even p(s(s(X))) ← next0 p(X), next1 next0 even(X).

Unfolding clause (12) at ‘next0 p(s(X))’ using (3) we get:

(15) next1 even p(s(s(X))) ← p(X), next1 even(X).

The violation of the conditions 1-3 in definition 3.2, destroys the equivalence of programs,
as shown in the following example:

Example 3.3. Let P be the following program:

(1) first p ← first q, r.

(2) first q ← s.

(3) first r.

(4) first next0 s.
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Unfolding (1) at first q using clause (2), we get the program P1 = {2, 3, 4, 5}, where:

(5) first p ← s, r.

It is easy to see that M(P ) = {first r, first next0 s, first q, first p}, while
M(P1) = {first r, first next0 s, first q}. Hence M(P ) 6= M(P1).

Definition 3.3 (Rigid predicate). A predicate p is said to be rigid if it does not depends
on time i.e. every ground instance of p is either true in all moments in time or false in all
moments in time. A predicate p is said to be syntactically rigid (or s-rigid for short) if all
predicates on which p depends on, are defined by operator-free clauses2.

Definition 3.4 (Temporal Shift). Let C be a clause in P t
l of the form

C : A ← M,B,N

where A, B are temporal atoms, and M , N are (possibly empty) conjunctions of temporal
atoms. Let B be of the form Tref B′, where the temporal reference Tref may be empty.
Let C ′ be a clause obtained by replacing Tref B′ in the body of C by Tref ′B′. We say that
C ′ is obtained by applying the temporal shift transformation rule to C, if

1. The predicate of B′ is rigid, and

2. Either

(a) B′ is primitive, or

(b) B′ is also s-rigid in P0.

Example 3.4 (Continued from example 3.2). Since the predicate ‘even’ is s-rigid we
can eliminate the temporal reference ‘next0 next0’ of the atom ‘next0 next0 even(X)’ by
applying the temporal shift transformation rule in the body of (13). We obtain

(16) next0 next0 even p(s(s(X))) ← p(X), even(X).

In the same way, we can replace the temporal reference ‘next1 next0’ of the temporal atom
‘next1 next0 even(X)’ in the body of (14), by the temporal reference ‘next0’. We get

(17) next1 next0 even p(s(s(X))) ← next0 p(X), next0 even(X).

Finally, by applying the temporal shift rule to the clause (15) we get

(18) next1 even p(s(s(X))) ← p(X), even(X).

Definition 3.5 (Folding). Let C be a clause in P t
l of the form

C : A ← M,F, N

and D be a clause in P t
0 of the form:

D : B ← G

where A and B are temporal atoms and M , F , N , G are (possibly empty) conjunctions of
atoms. Then folding C using D consists in replacing C in Pl by the clause C ′, where:

C ′ : A ← M, T Bθ, N

iff the following conditions hold:

2I.e. clauses with no temporal operator applied to their atoms.
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1. There exists a temporal reference T and a substitution θ such that:

(a) T Gθ = F , and

(b) θ maps the variables which occur in the body of D but not in the head of D, into
distinct variables which do not occur in C ′.

2. (At least) one of the following holds:

(a) A, M and N are canonical.

(b) G is canonical.

(c) B is not canonical.

3. D is the only clause in P0 whose head is temporally unifiable with T Bθ.

C is called a folded clause, D is called the folding clause and T B0θ the atom introduced
by folding.

Example 3.5 (Continued from example 3.4). Folding (16) using (1) we get

(19) next0 next0 even p(s(s(X))) ← even p(X).

Folding (17) using (1) we get

(20) next1 next0 even p(s(s(X))) ← next0 even p(X).

Finally, folding (18) using (1) we obtain

(21) next1 even p(s(s(X))) ← even p(X).

Violation of condition 2 in definition 3.5, destroys the equivalence of programs:

Example 3.6. Let P be the following program:

(1) p ← q, r.

(2) first s ← r.

(3) first q.

(4) first next0 r.

Then M(P ) = {first q, first next0 r, first s}. Let us fold (violating condition 2)
clause (1) using clause (2). We get the program P1 = {2, 3, 4, 5}, where:

(5) p ← q, first s.

Then M(P1) = {first q, first next0 r, first s, first p}. Thus M(P1) 6= M(P ).

Definition 3.6 (Transformation Sequence). A sequence of programs P0, P1, . . . , Pl is called
a transformation sequence starting from the initial program P0 iff each program Pi, with i > 0,
is obtained by applying one of the rules: unfolding, temporal shift and folding, to Pi−1.

Example 3.7 (Continued from example 3.5). The final program in the transformation
sequence is Pfinal = {2, 3, 4, 5, 6, 10, 19, 20, 21}, where:
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(10) even p(0).
(19) next0 next0 even p(s(s(X))) ← even p(X).
(20) next1 next0 even p(s(s(X))) ← next0 even p(X).
(21) next1 even p(s(s(X))) ← even p(X).

( 2) p(0).
( 3) next0 p(s(X)) ← p(X).
( 4) next1 p(s(X)) ← next0 p(X).

( 5) even(0).
( 6) even(s(s(X))) ← even(X).

It is easy to see that the set of clauses {10, 19, 20, 21} in Pfinal, form a recursive definition
for the predicate ‘even p’.

4 Correctness of the transformations

In this section, we present some correctness results concerning the transformation rules of
section 3. For this, we define the notions of partial and total correctness.

Definition 4.1 (Partially Correct Transformation). Let P0, . . . , Pi be a transformation
sequence. We say that the transformation is partially correct iff M(Pi) ⊆ M(P0).

Definition 4.2 (Totally Correct Transformation). Let P0, . . . , Pi be a transformation
sequence. We say that the transformation is totally correct iff M(Pi) = M(P0).

The transformation rules presented in the previous section are partially correct:

Lemma 4.1 (Partial Correctness). Let P0,P1, . . . , Ps be a transformation sequence. If
M(P0) = M(P1) = . . . = M(Pl), with 1 ≤ l ≤ s − 1, then M(Pl) ⊇ M(Pl+1).

Lemma 4.1 shows that a transformation step is partially correct if all the preceding
transformation steps are totally correct.

The transformation rules presented above are not totally correct unless we impose some
additional restrictions on the application of the transformation rules. In order to introduce
some sufficient conditions we need some more definitions.

Definition 4.3 (Level of predicate/atom/clause). Let P0 be an initial program in a trans-
formation sequence. To each predicate p in P0, we assign a non negative integer lp called the
level of p. The level of an atom is the level of its predicate. The level of a clause is the level
of its head.

Assumption 4.1 (On the assignment of levels in the initial program).

1. All primitive predicates are assigned the level 0.

2. Each transformable predicate is assigned a level i ≥ 1 such that for each clause C in
P0, the level of the head atom of C is greater than or equal to the level of each atom
in the body of C.
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Definition 4.4 (Unfolding state). Let Pl, with l ≥ 0, be a program in a transformation
sequence, starting from P0. To each clause C in P t

l we assign a pair [dC , bC ] of natural
numbers called the unfolding state of C, where dC is called the descent level of C while bC

is called the boundary unfolding number (or BU-number for short) of C. The unfolding state
of a clause is defined as follows:

1. If C is a clause in P t
0 and lC is the level of C, then [dC , bC ] = [lC , 1].

2. Let C be the result of unfolding a clause C ′ at a non primitive atom A, using a clause
D. Let [dC′ , bC′ ] and [dD, bD] be the unfolding states of C ′ and D respectively. Then
the unfolding state of C is [dC , bC ], where dC = min{dC′ , dD} and

bC =











bC′ if dC′ < dD

bD if dC′ > dD

bC′ + bD if dC′ = dD

3. Let C be the result of applying the temporal shift rule to a clause C ′ or the result
of unfolding C ′ at a primitive atom. Let U be the unfolding state of C ′. Then the
unfolding state of C is also U .

4. Let C be the result of folding a clause C ′ in P t
l−1

using a clause D in P t
0. Let [dC′ , bC′ ]

be the unfolding state of C and lD be the level of D. Then the unfolding state of C is
[dC , bC ], where dC = dC′ and

bC =

{

bC′ if dC < lD
bC′ − 1 if dC = lD

Using the above definition, we introduce the following sufficient condition which ensure
the correctness of the folding transformation rule.

Assumption 4.2 (On the application of Folding). Let Pl, with l ≥ 0, be a program
in a transformation sequence starting from P0 and Pl+1 a program obtained by applying the
folding rule to Pl. Let C and D be the folded and the folding clauses respectively. Let [dC , bC ]
be the unfolding state of C, and let lD be the level of D. The folding of C using D is said to
be valid iff lD > dC or (lD = dC and bC > 1).

Theorem 4.1 (Total Correctness). Let P0 be an initial program in a transformation
sequence, and Pl, with l > 0, a program obtained from P0 by applying a sequence of trans-
formation steps. Then, M(Pl) = M(P0).

5 A continuation passing style transformation for Cactus pro-

grams

The transformation system presented in section 3 can be used to define a continuation
passing style (CPS) transformation algorithm for Cactus programs. This algorithm is an
extension of the algorithm presented in [ST89] for definite clause programs. As in [ST89]
each argument of a program predicate is classified either as input or as output argument.
For each program predicate3 p(X, Y) we introduce a corresponding continuation passing style

3
X and Y are mutually disjoint tuples of variables such that X corresponds to the arguments specified as

input and Y corresponds to the arguments specified as output.
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predicate p C(X, C) called a closure predicate pairing with an auxiliary predicate cont p(Y, C)
called a continuation predicate. Using these predicates we define a clause called an existential
continuation form for p(X, Y) as follows:

p C(X, C) ← p(X, Y), cont p(Y, C)

The variable C is called the continuation variable. Using these notions we can now define
the CPS algorithm. The input of the algorithm is a Cactus program P while its output is a
program PCPS in continuation passing style form.

CPS transformation algorithm:

Step 1: Let Defe be the set of existential continuation forms for the predicates in P .
Step 2: For every clause (Cl) in Defe:

(Cl) p C(X, C) ← p(X, Y), cont p(Y, C)

apply the following process. Unfold (Cl) at p(X, Y) obtaining a set of clauses of the form:

(Cli) p C(Si, C) ← Ei, cont p(Ti, C)

with 1 ≤ i ≤ n, where n is the number of program clauses whose head is unifiable with
p(X, Y), and Si, Ti are instances of X and Y respectively.
For each i : 1 ≤ i ≤ n, do
Case 1: If Ei is empty add (Cli) to PCPS .
Case 2: If Ei is non empty, write (Cli) as

(Cli) p C(Si, C) ← R q(S, T), Fi, cont p(Ti, C)

where R is a temporal reference and q(S,T) is a classical atom. Then introduce and add to
Defc a new clause, called a continuation definition:

(Dj) R cont q(T, f(W, C)) ← Fi, cont p(Ti, C)

where W is a tuple of variables such that W = FreeV ars(Si, S)∩FreeV ars(T, Fi, Ti) and f is
a fresh function symbol. Fold (Cli) using by the definition (Dj) to get

(Cl′i) p C(Si, C) ← R q(S, T), R cont q(T, f(W, C))

Fold further (Cl′i) using the existential continuation form for the predicate q to get:

(Cl′′i ) p C(Si, C) ← R q C(S, f(W, C))

Add (Cl′′i ) to PCPS .
Step 3: For every clause (Di) in Defc

(Di) R cont q(T, f(W, C)) ← Fi, cont p(Ti, C)

apply the following process.
Case 1: If Fi is empty, add (Di) to PCPS .
Case 2: If Fi is non empty, transform (Di) following exactly the Case 2 in step 2.
Step 4: Supply PCPS with a set of unit clauses, called terminators, constructed as follows:
For each program predicate p(X, Y) in P , add a unit clause of the form cont p(Y, f

p
0(Y)).

Example 5.1. Let P0 = {1, 2, 3, 4, 5, 6} be the following Cactus program:
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(1) first num(0).
(2) next0 num(s(X)) ← num(X).
(3) next1 num(s(s(X))) ← num(X).
(4) next2 num(X) ← next0 num(X0), next1 num(X1), sum(X0, X1, X).

(5) sum(0, Y, Y).
(6) sum(s(X), Y, s(Z)) ← sum(X, Y, Z).

Suppose that the patterns num(+) and sum(+,+,-), reflect the classification of the arguments
of the program predicates as input (denoted by ‘+’) or output (denoted by ‘-’).
By applying the step 1 of the CPS algorithm we get the set Defe = {D1, D2}, where:

(D1) numC(X, C) ← num(X), cont num(C).
(D2) sumC(X, Y, C) ← sum(X, Y, Z), cont sum(Z, C).

Now we proceed in step 2 and unfold (D1) at num(X). We get

(7) first numC(0, C) ← first cont num(C).
(8) next0 numC(s(X), C) ← num(X), next0 cont num(C).
(9) next1 numC(s(s(X)), C) ← num(X), next1 cont num(C).
(10) next2 numC(X, C) ← next0 num(X0), next1 num(X1),

sum(X0, X1, X), next2 cont num(C).

We add (7) to PCPS . For clause (8) we introduce:

(D3) cont num(f1(C)) ← next0 cont num(C).

Folding (8) using (D3) we get

(11) next0 numC(s(X), C) ← num(X), cont num(f1(C)).

Folding (11) using (D1) we get clause (12) and add it to PCPS :

(12) next0 numC(s(X), C) ← numC(X, f1(C)).

For clause (9) we introduce:

(D4) cont num(f2(C)) ← next1 cont num(C).

Folding (9) using (D4) we get:

(13) next1 numC(s(s(X)), C) ← num(X), cont num(f2(C)).

Folding (13) using (D1) we get clause (14)which is added to PCPS :

(14) next1 numC(s(s(X)), C) ← numC(X, f2(C)).

For (10) we introduce:

(D5) next0 cont num(f3(X, X0, C)) ← next1 num(X1),
sum(X0, X1, X), next2 cont num(C).

Folding (10) using (D5) we get:

(15) next2 numC(X, C) ← next0 num(X0), next0 cont num(f3(X, X0, C)).

Folding (15) using (D1) we get clause (16) which is added to PCPS :

(16) next2 numC(X, C) ← next0 numC(X0, f3(X, X0, C)).

Now we unfold (D2) at ‘sum(X,Y,Z)’. We get
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(17) sumC(0, Y, C) ← cont sum(Y, C).
(18) sumC(s(X), Y, C) ← sum(X, Y, Z), cont sum(s(Z), C).

(17) is added to PCPS . For (18) we introduce clause (D6):

(D6) cont sum(Z, f4(C)) ← cont sum(s(Z), C).

Folding (18) using (D6) we get

(19) sumC(s(X), Y, C) ← sum(X, Y, Z), cont sum(Z, f4(C)).

Folding (19) using (D2) we get (20) which is added to PCPS :

(20) sumC(s(X), Y, C) ← sumC(X, Y, f4(C)).

Going into step 3 we add (D3), (D4) and (D6) to PCPS . For (D5) we introduce:

(D7) next1 cont num(f5(X, X0, X1, C)) ← sum(X0, X1, X), next2 cont num(C).

Folding (D5) using (D7) we get:

(21) next0 cont num(f3(X, X0, C)) ← next1 num(X1),
next1 cont num(f5(X, X0, X1, C)).

Folding (21) using (D1) we get clause (22) which is added to PCPS :

(22) next0 cont num(f3(X, X0, C)) ← next1 numC(X1, f5(X, X0, X1, C)).

For (D7) we introduce (D8) which is also added to PCPS :

(D8) cont sum(X, f6(X, C)) ← next2 cont num(C).

Folding (D7) using (D8) we get

(23) next1 cont num(f5(X, X0, X1, C)) ← sum(X0, X1, X), cont sum(X, f6(X, C)).

Folding (23) using (D2) we get (24) which is added to PCPS :

(24) next1 cont num(f5(X, X0, X1, C)) ← sumC(X0, X1, f6(X, C)).

Now applying step 4, we add the terminators:

(25) cont num(fnum0 ).
(26) cont sum(Y, fsum0 (Y)).

Collecting together all clauses in PCPS we obtain:

(7) first numC(0, C) ← first cont num(C).
(12) next0 numC(s(X), C) ← numC(X, f1(C)).
(14) next1 numC(s(s(X)), C) ← numC(X, f2(C)).
(16) next2 numC(X, C) ← next0 numC(X0, f3(X, X0, C)).

(25) cont num(fnum0 ).
(D3) cont num(f1(C)) ← next0 cont num(C).
(D4) cont num(f2(C)) ← next1 cont num(C).

(22) next0 cont num(f3(X, X0, C)) ← next1 numC(X1, f5(X, X0, X1, C)).
(24) next1 cont num(f5(X, X0, X1, C)) ← sumC(X0, X1, f6(X, C)).

(17) sumC(0, Y, C) ← cont sum(Y, C).
(20) sumC(s(X), Y, C) ← sumC(X, Y, f4(C)).

59



(26) cont sum(Y, fsum0 (Y)).
(D6) cont sum(Z, f4(C)) ← cont sum(s(Z), C).
(D8) cont sum(X, f6(X, C)) ← next2 cont num(C).

Although the CPS algorithm for definite clause programs presented in [ST89] applies to
every definite clause program, our algorithm does not apply to every Cactus program. This
is due to the restrictions imposed by the definitions of the unfolding and folding transforma-
tion rules. Nevertheless, we can show that the algorithm applies to a wide class of Cactus
programs. In order to define this class, we will define the notion of ‘naughty clauses’.

Definition 5.1 (Naughty clause). A clause C is said to be a naughty clause if there is a
canonical atom in the body of C and there is at least one non canonical atom either in the
head or in the body of C.

It is easy to see that our algorithm applies to every Cactus program not containing
naughty clauses as in this case the application of the unfolding and folding rules in the
algorithm do not violate the restrictions imposed by the corresponding definitions.

Theorem 5.1 (Correctness of the CPS algorithm). Let P0 be a Cactus program not
containing naughty clauses and PCPS be the program obtained by applying the CPS algorithm
to P0. Then, for every ground temporal atom ‘p(a, b)’ in the Herbrand base of P0 where ‘a’ is
a tuple corresponding to the arguments of ‘p’ specified as input and ‘b’ the tuple corresponding
to the arguments of ‘p’ specified as output, P0 |= p(a, b) iff PCPS |= p C(a, f

p
0 (b)).

6 Discussion

Program transformation techniques have been widely used in definite clause logic program-
ming as well as in functional programming. This is why we believe that they will also be
proved useful in temporal logic programming languages as well.

In this paper we define a program transformation system for branching-time (Cactus)
logic programs and present sufficient conditions for their correctness.

As an application of the transformation system that we propose, we develop an algorithm
which can be used to transform a wide class of branching time logic programs into equivalent
programs in continuation passing style form. A program obtained by applying the CPS
algorithm has a special form i.e. no clause in this program has more than one atoms it its
body.

Both the transformation system and the CPS algorithm apply also to Chronolog and
Chronolog(Z) programs [Wad88, OWD93]. Moreover, it is easy to adapt them to apply to
multidimensional logic programming languages [OD94] as well.

As in transformation of definite clause programs, transformation strategies are needed
to guide the application of the transformation rules. Nevertheless, it seems straightforward
to extend the transformation strategies developed in the context of definite clause program
transformation [PP95, PP93, PP94b] for the case of branching time logic programs.

It is important to note here that (zero-order) branching-time and multidimensional func-
tional languages have been recognized [RW97, Yag84, Ron94] as appropriate target languages
for transforming first-order functional programs. This transformation is very useful since
zero-order branching time programs can be efficiently executed using tagged, demand-driven
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evaluation [FW87]. We believe that the transformation system that we propose in this pa-
per may be used as a tool in order to define a similar transformation from definite clause
programs into multidimensional logic programs.
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