
Cactus� A Branching�Time Logic Programming
Language�

P� Rondogiannis�� M� Gergatsoulis�� T� Panayiotopoulos�

� Dept� of Computer Science� University of Ioannina�
P�O� BOX ����� ����� Ioannina� Greece�

e mail� prondo	zeus�cs�uoi�gr

� Inst� of Informatics
 Telecom�� N�C�S�R� �Demokritos��
�� �� A� Paraskevi Attikis� Greece
e mail� manolis	iit�nrcps�ariadne�t�gr

� Dept� of Informatics� University of Piraeus
�� Karaoli
 Dimitriou Str�� ���� Piraeus� Greece

e�mail � themisp	unipi�gr

Abstract� Temporal programming languages are recognized as natu�
ral and expressive formalisms for describing dynamic systems� However�
most such languages are based on linear �ow of time� a fact that makes
them unsuitable for certain types of applications� In this paper we in�
troduce the new temporal logic programming language Cactus� which
is based on a branching notion of time� In Cactus� the truth value of
a predicate depends on a hidden time parameter which has a tree�like
structure� As a result� Cactus appears to be especially appropriate for
expressing non�deterministic computations or generally algorithms that
involve the manipulation of tree data structures�

Keywords� Logic Programming� Temporal Logic Programming� Branch�
ing Time�

� Introduction

Temporal programming languages �OM��� Org��� are recognized as natural and
expressive formalisms for describing dynamic systems� For example� consider
the following Chronolog �Wad��� program simulating the operation of the tra�c
lights	

first light
green��
next light
amber� � light
green��
next light
red� � light
amber��
next light
green� � light
red��

However� Cronolog as well as most temporal languages �OM��� Hry��� OWD���
Bau��� OW�� Brz��� Brz��� GRP��� are based on linear �ow of time� a fact that

� This work has been funded by the Greek General Secretariat of Research and Tech�
nology under the project �TimeLogic� of �ENE����� contract no ����

This paper appears in the Proceedings of the First International Joint Conference on
Qualitative and Quantitative Practical Reasoning� ECSQARU�FAPR���� Bad Honnef�
Germany� June ����� Lecture Notes in Arti�cial Intelligence LNAI ��		� D
 Gabbay and
R
 Kruse and A
 Nonnengart and H
 J
 Ohlbach �eds�� pp ����	� Springer

makes them unsuitable for certain types of applications� In this paper we present
the new temporal logic programming language Cactus which is based on a tree�
like notion of time� that is� every moment in time may have more than one next
moments� The new formalism is appropriate for describing non�deterministic
computations or more generally computations that involve the manipulation of
trees�

Cactus supports two main operators	 the temporal operator first refers to
the beginning of time
or alternatively to the root of the tree�� The temporal
operator nexti refers to the i�th child of the current moment� Notice that we
actually have a family fnexti j i � Ng of next operators� each one of them
representing the di�erent next moments that immediately follow the present
one�

As an example� consider the following program	

first nat
���
next� nat�Y� � nat�X��Y is ��X���

next� nat�Y� � nat�X��Y is ��X���

The idea behind the above program is that the set of natural numbers can be
mapped on a binary tree of the form shown in �gure �� More speci�cally� one
can think of nat as a time�varying predicate� At the beginning of time
at the
root of the tree� nat is true of the natural number �� At the left child of the
root of the tree� n is true of the value �� while at the right child it is true of the
value �� In general� if nat is true of the value X at some node in the tree� then
at the left child of that node nat will be true of ��X�� while at the right child
of the node it will be true of ��X��� One can easily verify that the tree created
contains all the natural numbers�

 0

1 2

3 4 5 6
............

Fig� �� A mapping of the natural numbers on a binary tree

One could claim that branching time logic programming
or temporal logic
programming in general� does not add much to logic programming� because
time can always be added as an extra parameter to predicates� However� from a
theoretical viewpoint this does not appear to be straightforward
see for exam�
ple �Gab��� GHR��� for a good discussion on this subject�� Moreover� temporal

��

languages are very expressive for many problem domains� As it will become ap�
parent in the next sections� one can use the branching time concept in order to
represent in a natural way time�dependent data as well as to reason in a lucid
manner about these data�

The rest of the paper is organized as follows	 in section we present various
Cactus programs which demonstrate its potential in expressing tree computa�
tions� In section �� we formally introduce the syntax of the language� Section
� presents the underlying branching time logic BTL of Cactus� In section � we
discuss implementation issues� and section � gives the concluding remarks�

� The syntax of Cactus programs

The syntax of Cactus programs is an extension of the syntax of Prolog pro�
grams� In the following we assume familiarity with the basic notions of logic
programming �Llo����

A temporal atom is an atomic formula with a number
possibly �� of appli�
cations of temporal operators� The sequence of temporal operators applied to
an atom is called the temporal reference of that atom� A temporal clause is a
formula of the form	

H � B�� ����� Bm

where H�B�� ����� Bm are temporal atoms� m � �� If m � � then the clause is
said to be a unit temporal clause� A Cactus program is a �nite set of temporal

clauses�
A goal clause in Cactus is a formula of the form � A�� ����� An where Ai�

i � �� ���� n are temporal atoms�
Notice that the syntax of Cactus allows temporal operators to be applied on

body atoms as well� For example the program de�ning the predicate nat in the
introduction can be rede�ned as follows	

first nat
���
next� nat�Y� � nat�X�� Y is ��X���

next� nat�Y� � next� nat�X�� Y is X���

The meaning of the last clause is that the value assigned to the right child
of a node is the value of its left sibling plus ��

As it will become clear from the semantics of Cactus� a clause is assumed
to be true at every moment in time� In particular� this explains the di�erence
between a clause of the form

first nat
���

and the clause

nat
���

The �rst clause asserts that it is always true that nat��� is true at the
beginning of time while the second clause indicates that it is always true that
nat is true of � at every moment in time�

���

� Cactus Applications

In this section we present various applications showing the expressive power of
branching time logic programming�

��� Expressing non�deterministic behaviour

Consider the non�deterministic �nite automaton shown in �gure
taken from �LP���
page ��� which accepts the regular language L �
�� � ������ We can describe
the behaviour of this automaton in Cactus with the following program	

first state
q���
next� state
q�� � state
q���
next� state
q�� � state
q���
next� state
q�� � state
q���
next� state
q�� � state
q���

q0 q1

q2

0

1

0 1

q0 q1

q2

0

1

0 1

q0 q1

q2

0

1

0 1

Fig� �� A non�deterministic �nite automaton

Notice that� in this automaton q� is both the initial and the �nal state� Posing
the goal clause	

� first next� next� next� state
q���

will return the answer yes which indicates that the string ��� is an acceptable
string of the language L�

As we will see in section �� the proof procedure of Cactus is similar in nature
to the well known SLD�resolution of Horn clause logic programming �Llo����

���

��� Generating sequences

One can write a simple Cactus program for producing the set of all binary
sequences� The set of such sequences may be thought of as a tree� which can be
described by the following program	

first binseq
� ���
next� binseq
��jX�� � binseq
X��
next� binseq
��jX�� � binseq
X��

The goal clause	

� binseq
S��

will trigger an in�nite computation which will generate all possible sequences�
More speci�cally� the underlying proof procedure of Cactus� considers the above
goal clause as an in�nite set of �temporally ground� goal clauses� each one cor�
responding to a di�erent point of the time tree�

One can combine the program binseq with the program for the nondeter�
ministic automaton given in subsection ���� In this way we can produce the
language recognized by the automaton� More speci�cally� the goal clause	

� state
q��� binseq
S��

produces the in�nite set of all the binary sequences recognized by the automaton�
The above goal clause
assuming a left to right computation rule� is not the
classical generate�and�test procedure
not all binary sequences are generated
but only those for which the automaton reaches the �nal state q��� This is due
to the fact that each succesful evaluation of the goal state�q�� at a speci�c time
point� triggers a corresponding evaluation of binseq� at the same time point�

It is worthwhile noting here that in order to generate another language one
only needs to change the de�nition of the automaton and not the de�nition of
binseq�

��� Representing and manipulating trees

Branching time logic programming is a powerful tool for representing and ma�
nipulating trees� A tree can be represented in Cactus as a set of temporal unit
clauses� The structure of the tree is expressed through the temporal references
of the unit clauses� Moreover� the well known tree manipulation algorithms are
easily and naturally expressed through Cactus programs� For example� consider
the binary tree of �gure ��

A possible representation of the information included in this tree is given by
the following set of Cactus unit clauses	

���

8

 5 12

2 7 159

Fig� �� An �ordered� binary tree containing numeric data

first data
	��
first next� data

��
first next� data
����
first next� next� data
���
first next� next� data
���
first next� next� data
���
first next� next� data
�
��

The following program de�nes the predicate descendant�X�� A temporal
atom � Temporal reference � descendant�X� is true if data�X� is true in the
time represented by � Temporal reference � or in a future moment of this
time point�

descendant
X� � data
X��
descendant
X� � data
Y�� next� descendant
X��
descendant
X� � data
Y�� next� descendant
X��

Notice that the purpose of the existence of the atom data�Y� in the bodies of
the second and third clause is only to ensure termination of the proof procedure�

A more e�cient de�nition of the predicate descendant which takes into
account the fact that the binary tree is ordered
binary search� is shown in the
following program�

descendant
X� � data
X��
descendant
X� � data
Y�� X � Y�next� descendant
X��
descendant
X� � data
Y�� X � Y�next� descendant
X��

By posing the goal clause	

� first next� descendant
���

we will get the answer yes� because the value � is in a node which represents a
moment in the future of first next��

���

Using the de�nition of the predicate descendant we can de�ne the predicate
search which tests if a speci�c numeric value is in a node of the data tree� The
de�nition of search is given by the clause	

search
X� � first descendant
X��

Let us now de�ne a predicate flattree which collects the values in the tree
nodes into a list� This de�nition corresponds to the preorder traversal of the
tree�

flattree
� �� � data
void��
flattree
�XjL�� � data
X��

next� flattree
L���
next� flattree
L���
append
L�� L�� L��

Notice that the above program recognizes the tips of the tree when it en�
counters a data�void� unit clause� For this� we have to add the following unit
clauses to the program�	

first next� next� next� data
void��
first next� next� next� data
void��
first next� next� next� data
void��
first next� next� next� data
void��
first next� next� next� data
void��
first next� next� next� data
void��
first next� next� next� data
void��
first next� next� next� data
void��

� The branching time logic of Cactus

In this section we describe the branching time logic
BTL� on which Cactus
is based� In BTL� time has an initial moment and �ows towards the future in
a tree�like way� The set of moments in time in BTL� can be modelled by the
set List
N � of lists of natural numbers� In this case� each node has a countably
in�nite number of branches
next operators�� Similarly� we may choose a �nite
subset S of N and de�ne the logic BTL
S�� which has a �nite number of nexti
operators whose subscript i ranges over the set S� Intuitively� this corresponds
to trees in which every node has a �nite number of branches� In any case� the
empty list � � corresponds to the beginning of time and the list �ijt�
that is� the
list with head i and tail t� corresponds to the i�th child of the moment identi�ed
by the list t�

� A more compact representation of the above tree �that avoids the use of void nodes�
would be to distinguish the �inner� nodes from the leafs of the tree by using two
di�erent predicate names e�g� node�X� and tip�X� instead of the single predicate
data� In that case we have to change slightly the de�nition of flattree�

���

BTL uses the temporal operators first and nexti� i � N � The operator
first is used to express the �rst moment in time� while nexti refers to the i�th
child of the current moment in time� The syntax of BTL extends the syntax of
�rst�order logic with two formation rules	

� if A is a formula then so is first A� and
� if A is a formula then so is nexti A�

BTL is a relatively simple branching time logic� For more on branching time
logics one can refer to �BAPM����

��� Semantics of BTL formulas

The semantics of temporal formulas ofBTL are given using the notion of branch�
ing temporal interpretation� Branching temporal interpretations extend the tem�
poral interpretations of the linear time logic of Chronolog �Org����

De�nition�� A branching temporal interpretation or simply a temporal inter�

pretation I of the temporal logic BTL comprises a non�empty set D� called the
domain of the interpretation� over which the variables range� together with an
element of D for each variable� for each n�ary function symbol� an element of
�Dn � D�� and for each n�ary predicate symbol� an element of �List
N �� D

n

��

In the following de�nition� the satisfaction relation j� is de�ned in terms of
temporal interpretations� j�I�t A denotes that a formula A is true at a moment
t in some temporal interpretation I�

De�nition�� The semantics of the elements of the temporal logic BTL are
given inductively as follows	

�� If f
e�� � � � � en��� is a term� then I
f
e�� � � � � en���� � I
f�
I
e��� � � � � I
en�����
� For any n�ary predicate symbol p and terms e�� � � � � en���
j�I�t p
e�� � � � � en��� iff hI
e��� � � � � I
en���i � I
p�
t�

�� j�I�t �A iff it is not the case that j�I�t A
�� j�I�t A �B iff j�I�t A and j�I�t B
�� j�I�t A �B iff j�I�t A or j�I�t B
�� j�I�t
�x�A iff j�I�d�x��t A for all d � D where the interpretation I�d�x� is

the same as I except that the variable x is assigned the value d�
�� j�I�t first A iff j�I�� � A
�� j�I�t nexti A iff j�I��ijt� A

If a formula A is true in a temporal interpretation I at all moments in time�
it is said to be true in I
we write j�I A� and I is called a model of A�

Clearly� Cactus clauses form a subset of BTL formulas� It can be shown that
the usual minimal model and �xpoint semantics that apply to logic programs�
can be extended to apply to Cactus programs� However� such an investigation is
outside the scope of this paper and is reported in a forthcoming paper �RGP����

���

��� Axioms and Rules of Inference

In this section we present some useful axioms and inference rules that hold for
the logic BTL� many of which are similar to those adopted for the case of linear
time logics �Org���� In the following� the symbol r stands for any of first and
nexti�

Temporal operator cancellation rules� The intuition behind these rules
is that the operator first cancels the e�ect of any other �outer� operator�
Formally	

r
first A�	
first A�

Notice that this is actually a family of rules� one for each di�erent instantiation
of the operator r�

Temporal operator distribution rules� These rules express the fact that the
branching time operators of BTL distribute over the classical operators �� �
and �� Formally	

r
�A�	 �
rA�
r
A �B�	
rA� �
rB�
r
A �B�	
rA� �
rB�

Again� each of the above rules actually represents a family of rules depending
on the instantiation of r�

From the temporal operator distribution rules we see that if we apply a
temporal operator to a whole program clause� the operator can be pushed inside
until we reach atomic formulas� This is why we did not consider applications of
temporal operators to whole program clauses�

Temporal operator non�commutativity rule� This rule says that the fol�
lowing	

nexti nextj A	 nextj nexti A

is not a valid axiom of the language when i
� j� The essence of this rule is that
in general� two operators nexti and nextj can not be interchanged when i and
j are di�erent�

Rigidness of variables� The following rule states that a temporal operator r
can �pass inside� �	

r
�X�
A�	
�X�
rA�

The above rule holds because variables represent data�values composed of func�
tion symbols and constants which are independent of time
i�e� they are rigid��

Temporal operator introduction rules� The following rule states that if A
is a theorem of BTL then rA is also a theorem of BTL�

if � A then � rA

The validity of the above axioms is easily proved using the semantics of BTL�

���

� A proof procedure for branching time logic programs

Cactus programs are executed using a resolution�type proof procedure called
BSLD�resolution
Branching�time SLD�resolution�� For practical reasons� we
suppose that the underlying logic of Cactus programs is BTL
S�� where S is a ��
nite subset of N
i�e� in the time tree every node has a �nite number of branches��
BSLD�resolution is a refutation procedure which extends SLD�resolution �Llo����
and is similar to TiSLD�resolution �OW���� the proof procedure for Chronolog
programs� The following de�nitions are necessary in order to introduce BSLD�
resolution�

De�nition�� A canonical temporal atom is a formula first nexti� � � �nextin A�
where i�� � � � � in � S and n � �� and A is an atom� A canonical temporal clause

is a temporal clause whose temporal atoms are canonical temporal atoms�

As in Chronolog �Org��� OWD���� every temporal clause can be transformed
into a
possibly in�nite� set of canonical temporal clauses� This can be done by
applying first nexti� � � �nextin � where i�� � � � � in � S and n � �� to the clause
and then using the axioms of BTL� presented in section ��� to distribute the
temporal reference so as to be applied to each individual temporal atom of the
clause� �nally any super�uous operator is eliminated by applying the cancellation
rules of BTL�

Intuitively� a canonical temporal clause is an instance in time of the corre�
sponding temporal clause�

Example �� Consider the following Cactus program	

first p
���
next� p�s�X�� � p�X��

next� p�s�s�X��� � p�X��

The set of canonical temporal clauses corresponding to the program clauses
is as follows	

The clause	
first p����

is the only canonical temporal clause corresponding to the �rst program clause

because of axiom ���

The set of clauses	

ffirst nexti� � � �nextin next� p
s
X�� � first nexti� � � �nextin p
X� j
n � N� i�� � � � � in � Sg

corresponds to the second program clause� Finally the set of clauses	

ffirst nexti� � � �nextin next� p
s
s
X��� � first nexti� � � �nextin p
X� j
n � N� i�� � � � � in � Sg

corresponds to the third program clause�

��

The notion of canonical atom�clause is very important since the value of a
given formula of a branching time logic BTL
S�� for some �nite subset S of
N � in a temporal interpretation can be expressed in terms of the values of its
canonical instances� as the following lemma shows	

Lemma�� Let A be a formula and I a temporal interpretation of BTL
S��
j�I A if and only if j�I At for all canonical instances At of A�

BSLD�resolution is applied to canonical instances of program clauses and
goal clauses�

De�nition	� Let P be a Cactus program and G be a canonical temporal goal� A
BSLD�derivation fromP with top goalG consists of a
possibly in�nite sequence�
of canonical temporal goals G� � G�G�� ����� Gn� ��� such that for all i the goal
Gi�� is obtained from the goal	

Gi � � A�� ����� Am��� Am� Am��� ����� Ap

as follows	

�� Am is a canonical temporal atom in Gi
called the selected atom�
� H � B�� ������Br is a canonical instance of a program clause�
�� there is a substitution � such that � � mgu
Am�H�
�� Gi�� is the goal	

Gi�� � �
A�� ����� Am��� B�� �������Br� Am��� ����� Ap��

De�nition
� Let P be a Cactus program and G be a canonical temporal goal�
A BSLD�refutation from P with top goal G is a �nite BSLD�derivation of the
null clause � from P with top goal G�

Let us now see an example of the application of BSLD�resolution�

Example �� Consider the program de�ning the predicate nat presented in the
introduction	

�� first nat
���

� next� nat�Y� � nat�X��Y is ��X���

�� next� nat�Y� � nat�X��Y is ��X���

A BSLD�refutation of the canonical temporal goal
in every derivation step the
selected temporal atom is the underlined one�	

� first next� next� nat�N�

is given below	

� first next� next� nat�N�

using clause
��

� first next� nat�X�� first next� �N is � � X � ��

��

using clause
�

� first nat�X��� first next� �X is � � X� � ���

first next� �N is � � X � ��

X� �� using clause
��

� first next� �X is � � � � ��� first next� �N is � � X � ��

X �� evaluation of the built�in predicate is�

� first next� �N is � � � � ��

N �� evaluation of the built�in predicate is

�

When some of the temporal atoms included in a goal clause are not canon�
ical� we say that we have an open�ended goal clause
e�g� the goal clauses in
section ���� The idea behind open�ended goal clauses was �rst introduced in
the context of Cronolog �OW���� An open�ended goal clause G represents the
in�nite set of all canonical queries corresponding to G� Open�ended goal clauses
are used to imitate non�terminating computations� An implementation strategy
for executing an open�ended goal clause is by enumerating and evaluating
one
by one� the set of all canonical instances of the goal clause
e�g� by traversing in
a breadth��rst way the time�tree��

� Conclusions

Temporal programming languages� either functional �WA��� DW��� EAAJ���
or logic �OM��� Org��� PG���� have been widely used as a means for describing
dynamic systems� However� most temporal languages use a linear notion of time
a fact that makes them unsuitable for certain types of applications�

In this paper we introduce the branching time logic programming language
Cactus which is based on a tree�like notion of time�We demonstrate that Cactus
is capable of expressing various problems in a natural way� Moreover� we show
that Cactus retains the semantic clarity of logic programming and has a simple
procedural interpretation�

The branching time concept has been particularly successful in the func�
tional programming domain �RW��� Ron��� Yag��� Tao��� and we believe that
a similar potential exists for the area of logic programming�

References

�BAPM�� M� Ben�Ari� A� Pnueli� and Z� Manna� The Temporal Logic of Branching
Time� Informatica� pages �������� ����

� In order to use Cactus in practical applications it is useful to introduce certain
built�in predicates which behave as in classical Prolog� The built�in procedure is is
considered to be independent of time �rigid��

�

�Bau�� M� Baudinet� A simple proof of the completeness of temporal logic pro�
gramming� In L� Farinas del Cerro and M� Penttonen� editors� International
Logics for Programming� pages ����� Oxford University Press� ����

�Brz��� C� Brzoska� Temporal logic programming and its relation to constraint
logic programming� In Proc� of the Logic Programming Symposium� pages
�������� MIT Press� �����

�Brz�� C� Brzoska� Temporal logic programming with bounded universal modality
goals� In D� S� Warren� editor� Proc� of the Tenth International Conference
on Logic Programming� pages ������� MIT Press� ����

�DW��� W� Du and W�W�Wadge� A D Spreadsheet Based on Intensional Logic�
IEEE Software� pages ������ July �����

�EAAJ��� A� A� Faustini E� A� Ashcroft and R� Jagannathan� An Intensional Lan�
guage for Parallel Applications Programming� In B�K�Szymanski� editor�
Parallel Functional Languages and Compilers� pages ������ ACM Press�
�����

�Gab��� Dov Gabbay� Modal and temporal logic programming� In A� Galton� editor�
Temporal Logics and their applications� pages ������� Academic Press�
London� �����

�GHR��� D� M� Gabbay� I� Hodkinson� and M� Reynolds� Temporal Logic� Mathe�
matical Foundations and Computational Aspects� Clarendon Press�Oxford�
�����

�GRP��� M� Gergatsoulis� P� Rondogiannis� and T� Panayiotopoulos� Disjunctive
Chronolog� In M� Chacravarty� Y� Guo� and T� Ida� editors� Proceedings
of the JICSLP��� Post�Conference Workshop �Multi�Paradigm Logic Pro�
gramming�� pages ������� Bonn� ��� Sept� �����

�Hry�� T� Hrycej� A temporal extension of Prolog� The Journal of Logic Program�
ming� ���������� ����

�Llo��� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� �����

�LP��� H� R� Lewis and C� H� Papadimitriou� Elements of the Theory of Compu�
tation� Prentice�Hall� Inc�� �����

�OM��� M� A� Orgun and W� Ma� An overview of temporal and modal logic pro�
gramming� In Proc� of the First International Conference on Temporal
Logics �ICTL��	
� pages �������� Springer Verlag� ����� LNCS No ����

�Org��� M� A� Orgun� Intensional Logic Programming� PhD thesis� Dept� of Com�
puter Science� University of Victoria� Canada� December �����

�OW��� M� A� Orgun and W� W� Wadge� Towards a uni�ed theory of intensional
logic programming� The Journal of Logic Programming� ������������ Au�
gust �����

�OW�� M� A� Orgun and W� W� Wadge� Chronolog admits a complete proof pro�
cedure� In Proc� of the Sixth International Symposium on Lucid and Inten�
sional Programming �ISLIP���
� pages ������� ����

�OWD�� M� A� Orgun� W� W� Wadge� and W� Du� Chronolog�Z�� Linear�time logic
programming� In O� Abou�Rabia� C� K� Chang� and W� W� Koczkodaj�
editors� Proc� of the �fth International Conference on Computing and In�
formation� pages �������� IEEE Computer Society Press� ����

�PG��� T� Panayiotopoulos and M� Gergatsoulis� Intelligent information process�
ing using TRLi� In �th International Conference and Workshop on Data
Base and Expert Systems Applications �DEXA� �
� �Workshop Proceed�
ings
 London� UK� 	th��th September� pages �������� �����

��

�RGP��� P� Rondogiannis� M� Gergatsoulis� and T� Panayiotopoulos� Theoretical
foundations of Branching�Time Logic Programming� ����� In preparation�

�Ron��� P� Rondogiannis� Higher�Order Functional Languages and Intensional
Logic� PhD thesis� Dept� of Computer Science� University of Victoria�
Canada� December �����

�RW��� P� Rondogiannis and W� W� Wadge� First�order functional languages and
intensional logic� Journal of Functional Programming� ����� �to appear��

�Tao��� S� Tao� Indexical Attribute Grammars� PhD thesis� Dept� of Computer
Science� University of Victoria� Canada� �����

�WA��� W� W� Wadge and E� A� Ashcroft� Lucid� the data�ow Programming Lan�
guage� Academic Press� �����

�Wad��� W� W� Wadge� Tense logic programming� A respectable alternative� In
Proc� of the ���� International Symposium on Lucid and Intensional Pro�
gramming� pages ����� �����

�Yag��� A� Yaghi� The Intensional Implementation Technique for Functional Lan�
guages� PhD thesis� Dept� of Computer Science� University of Warwick�
Coventry� UK� �����

This article was processed using the LATEX macro package with LLNCS style

��

