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Abstract. Temporal programming languages are recognized as natu-
ral and expressive formalisms for describing dynamic systems. However,
most such languages are based on linear flow of time, a fact that makes
them unsuitable for certain types of applications. In this paper we in-
troduce the new temporal logic programming language Cactus, which
is based on a branching notion of time. In Cactus, the truth value of
a predicate depends on a hidden time parameter which has a tree-like
structure. As a result, Cactus appears to be especially appropriate for
expressing non-deterministic computations or generally algorithms that
involve the manipulation of tree data structures.

Keywords: Logic Programming, Temporal Logic Programming, Branch-
ing Time.

1 Introduction

Temporal programming languages [OM94, Org91] are recognized as natural and
expressive formalisms for describing dynamic systems. For example, consider
the following Chronolog [Wad88] program simulating the operation of the traffic
lights:

first light(green).

next light(amber) < light(green).

next light(red) ¢« light(amber).

next light(green) <« light(red).

However, Cronolog as well as most temporal languages [OM94, Hry93, OWD93,
Bau93, OW92, Brz91, Brz93, GRP96] are based on linear flow of time, a fact that
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makes them unsuitable for certain types of applications. In this paper we present
the new temporal logic programming language Cactus which 1s based on a tree-
like notion of time; that is, every moment in time may have more than one next
moments. The new formalism is appropriate for describing non-deterministic
computations or more generally computations that involve the manipulation of
trees.

Cactus supports two main operators: the temporal operator first refers to
the beginning of time (or alternatively to the root of the tree). The temporal
operator next; refers to the i-th child of the current moment. Notice that we
actually have a family {next; | i € N} of next operators, each one of them
representing the different next moments that immediately follow the present
one.

As an example, consider the following program:

first nat(0).
nexty nat(Y) < nat(X),Y is 2*X+1.
next; nat(Y) « nat(X),Y is 2*X+2.

The idea behind the above program is that the set of natural numbers can be
mapped on a binary tree of the form shown in figure 1. More specifically, one
can think of nat as a time-varying predicate. At the beginning of time (at the
root of the tree) nat is true of the natural number 0. At the left child of the
root of the tree, n is true of the value 1, while at the right child it is true of the
value 2. In general, if nat is true of the value X at some node in the tree; then
at the left child of that node nat will be true of 2*X+1 while at the right child
of the node 1t will be true of 2*X+2. One can easily verify that the tree created
contains all the natural numbers.

Fig. 1. A mapping of the natural numbers on a binary tree

One could claim that branching time logic programming (or temporal logic
programming in general) does not add much to logic programming, because
time can always be added as an extra parameter to predicates. However, from a
theoretical viewpoint this does not appear to be straightforward (see for exam-
ple [Gab87, GHR94] for a good discussion on this subject). Moreover, temporal
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languages are very expressive for many problem domains. As it will become ap-
parent in the next sections, one can use the branching time concept in order to
represent in a natural way time-dependent data as well as to reason in a lucid
manner about these data.

The rest of the paper is organized as follows: in section 2 we present various
Cactus programs which demonstrate its potential in expressing tree computa-
tions. In section 3, we formally introduce the syntax of the language. Section
4 presents the underlying branching time logic BT'L of Cactus. In section 5 we
discuss implementation issues, and section 6 gives the concluding remarks.

2 The syntax of Cactus programs

The syntax of Cactus programs is an extension of the syntax of Prolog pro-
grams. In the following we assume familiarity with the basic notions of logic
programming [L1o87].

A temporal atom is an atomic formula with a number (possibly 0) of appli-
cations of temporal operators. The sequence of temporal operators applied to
an atom 1s called the temporal reference of that atom. A temporal clause is a
formula of the form:

H « Bi, ..., Bn

where H, By, ...., By, are temporal atoms, m > 0. If m = 0 then the clause is
said to be a unit temporal clause. A Cactus program is a finite set of temporal
clauses.

A goal clause in Cactus is a formula of the form + A;,...., A, where A;,
t=1,...,n are temporal atoms.

Notice that the syntax of Cactus allows temporal operators to be applied on
body atoms as well. For example the program defining the predicate nat in the
introduction can be redefined as follows:

first nat(0).
nexto nat(Y) < nat(X), Y is 2*X+1.
next; nat(Y) + nexty nat(X), Y is X+1.

The meaning of the last clause is that the value assigned to the right child
of a node is the value of its left sibling plus 1.

As it will become clear from the semantics of Cactus, a clause is assumed
to be true at every moment in time. In particular, this explains the difference
between a clause of the form

first nat(0).
and the clause
nat(0).

The first clause asserts that it is always true that nat(0) is true at the
beginning of time while the second clause indicates that it 1s always true that
nat 1s true of 0 at every moment in time.
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3 Cactus Applications

In this section we present various applications showing the expressive power of
branching time logic programming.

3.1 Expressing non-deterministic behaviour
Consider the non-deterministic finite automaton shown in figure 2 (taken from [LP81]

page 55) which accepts the regular language L = (01 U 010)*. We can describe
the behaviour of this automaton in Cactus with the following program:

first state(q0).
next, state(ql) <« state(q0).
next; state(q2) <« state(ql).
next; state(q0) <« state(ql).
next; state(q0) <« state(q2).

1

0

0 1
q2

Fig. 2. A non-deterministic finite automaton

Notice that, in this automaton g0 is both the initial and the final state. Posing
the goal clause:

+ first next, next; next, state(q0).

will return the answer yes which indicates that the string 010 is an acceptable
string of the language L.

As we will see in section 5, the proof procedure of Cactus is similar in nature
to the well known SLD-resolution of Horn clause logic programming [L1087].
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3.2 Generating sequences

One can write a simple Cactus program for producing the set of all binary
sequences. The set of such sequences may be thought of as a tree, which can be
described by the following program:

first binseq([]).
nextp binseq([0]|X]) « binseq(X).
next; binseq([1]|X]) < binseq(X).

The goal clause:
< binseq(S).

will trigger an infinite computation which will generate all possible sequences.
More specifically, the underlying proof procedure of Cactus, considers the above
goal clause as an infinite set of “temporally ground” goal clauses, each one cor-
responding to a different point of the time tree.

One can combine the program binseq with the program for the nondeter-
ministic automaton given in subsection 3.1. In this way we can produce the
language recognized by the automaton. More specifically, the goal clause:

+ state(q0),binseq(S).

produces the infinite set of all the binary sequences recognized by the automaton.
The above goal clause (assuming a left to right computation rule) is not the
classical generate-and-test procedure (not all binary sequences are generated
but only those for which the automaton reaches the final state q0). This is due
to the fact that each succesful evaluation of the goal state(q0) at a specific time
point, triggers a corresponding evaluation of binseq, at the same time point.

It is worthwhile noting here that in order to generate another language one
only needs to change the definition of the automaton and not the definition of
binseq.

3.3 Representing and manipulating trees

Branching time logic programming is a powerful tool for representing and ma-
nipulating trees. A tree can be represented in Cactus as a set of temporal unit
clauses. The structure of the tree is expressed through the temporal references
of the unit clauses. Moreover, the well known tree manipulation algorithms are
easily and naturally expressed through Cactus programs. For example, consider
the binary tree of figure 3.

A possible representation of the information included in this tree is given by
the following set of Cactus unit clauses:
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2 7 9 15

Fig. 3. An (ordered) binary tree containing numeric data

first data(8).

first next, data(5).
first next; data(12).
first next, next, data(2)
first next; next, data(9)
first nexto next; data(7)
first next; next; data(15).

The following program defines the predicate descendant(X). A temporal
atom < Temporal reference > descendant (X) is true if data(X) is true in the
time represented by < Temporal reference > or in a future moment of this
time point.

descendant(X) + data(X).
descendant(X) < data(Y),nexty descendant(X).
descendant(X) < data(Y),next; descendant(X).

Notice that the purpose of the existence of the atom data(Y) in the bodies of
the second and third clause is only to ensure termination of the proof procedure.

A more efficient definition of the predicate descendant which takes into
account the fact that the binary tree is ordered (binary search) is shown in the
following program.

descendant(X) + data(X).
descendant(X) < data(Y),X < Y,nexty descendant(X).
descendant(X) < data(Y),X > Y,next; descendant(X).

By posing the goal clause:
+ first next, descendant(7).

we will get the answer yes, because the value 7 is in a node which represents a
moment in the future of first nextg.
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Using the definition of the predicate descendant we can define the predicate
search which tests if a specific numeric value is in a node of the data tree. The
definition of search is given by the clause:

search(X) « first descendant(X).

Let us now define a predicate flattree which collects the values in the tree
nodes into a list. This definition corresponds to the preorder traversal of the
tree.

flattree([]) « data(void).

flattree([X|L]) « data(X),
nexto, flattree(L1),
next; flattree(L2),
append(L1,L2,L).

Notice that the above program recognizes the tips of the tree when it en-
counters a data(void) unit clause. For this, we have to add the following unit
clauses to the program®:

first nexty nexty nexty data(void
first nexty nexty next, data(void

first nexty next, nextg data(v01d
first nexty next, next, data(void
first next, nexty nextg data(void

first next, nexty next, data(void
first next, next; nexty data(void

first next, next; next,; data(void).

e e e et e e e

4 The branching time logic of Cactus

In this section we describe the branching time logic (BT'L) on which Cactus
is based. In BT'L, time has an initial moment and flows towards the future in
a tree-like way. The set of moments in time in BT'L, can be modelled by the
set List(N) of lists of natural numbers. In this case, each node has a countably
infinite number of branches (next operators). Similarly, we may choose a finite
subset S of N and define the logic BT'L(S), which has a finite number of next;
operators whose subscript ¢ ranges over the set S. Intuitively, this corresponds
to trees in which every node has a finite number of branches. In any case, the
empty list [ ] corresponds to the beginning of time and the list [¢]¢] (that is, the
list with head ¢ and tail ¢) corresponds to the i-th child of the moment identified
by the list ¢.

* A more compact representation of the above tree (that avoids the use of void nodes)
would be to distinguish the (inner) nodes from the leafs of the tree by using two
different predicate names e.g. node (X) and tip(X) instead of the single predicate
data. In that case we have to change slightly the definition of flattree.
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BTL uses the temporal operators first and next;, ¢ € N. The operator
first is used to express the first moment in time, while next; refers to the i-th
child of the current moment in time. The syntax of BT'L extends the syntax of
first-order logic with two formation rules:

— if A is a formula then so is first A, and
— 1f A 1s a formula then so is next; A.

BTL is a relatively simple branching time logic. For more on branching time
logics one can refer to [BAPMS83].

4.1 Semantics of BT L formulas

The semantics of temporal formulas of BT'L are given using the notion of branch-
wng temporal interpretation. Branching temporal interpretations extend the tem-
poral interpretations of the linear time logic of Chronolog [Org91].

Definitionl. A branching temporal interpretation or simply a temporal inter-
pretation I of the temporal logic BT comprises a non-empty set D, called the
domain of the interpretation, over which the variables range, together with an
element of D for each variable; for each n-ary function symbol, an element of
[D™ — DJ; and for each n-ary predicate symbol, an element of [List(N) — 2P"].

In the following definition, the satisfaction relation | is defined in terms of
temporal interpretations. =r; A denotes that a formula A is true at a moment
t in some temporal interpretation I.

Definition2. The semantics of the elements of the temporal logic BT'L are
given inductively as follows:

1. Iff(eg,...,en—1)is aterm, then I(f(eg,...,en—1)) = I(£)(I(e0),. .-, I(en-1)).
2. For any n-ary predicate symbol p and terms eg, ..., e,_1,
Fripleo, .. en_1) iff (I(eo), .., I(enz1)) € I(p)(¢)

Ere—Aiff it is not the case that E=ry A

':I,t ANBiff ':I,t A and ':I,t B

':I,t AV Biff ':I,t A or ':I,t B

Fre (Ye)Aiff Erajee A for all d € D where the interpretation I[d/x] is
the same as I except that the variable x is assigned the value d.

':I,t first A iff ':I,[] A

. Frenext; Aiff =rpg A

S O W

o0 =~

If a formula A is true in a temporal interpretation I at all moments in time,
it is said to be true in I (we write =5 A) and T is called a model of A.

Clearly, Cactus clauses form a subset of BT'L formulas. It can be shown that
the usual minimal model and fixpoint semantics that apply to logic programs,
can be extended to apply to Cactus programs. However, such an investigation is
outside the scope of this paper and is reported in a forthcoming paper [RGP97].
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4.2 Axioms and Rules of Inference

In this section we present some useful axioms and inference rules that hold for
the logic BT L, many of which are similar to those adopted for the case of linear
time logics [Org91]. In the following, the symbol V stands for any of first and
next;.

Temporal operator cancellation rules: The intuition behind these rules
is that the operator first cancels the effect of any other “outer” operator.
Formally:

V(first A) & (first A)
Notice that this is actually a family of rules, one for each different instantiation
of the operator V.

Temporal operator distribution rules: These rules express the fact that the
branching time operators of BT L distribute over the classical operators =, A
and V. Formally:

V(-A4) & =(VA)

V(AAB) < (VA) A (VB)

V(AV B) < (VA)V (VB)
Again, each of the above rules actually represents a family of rules depending
on the instantiation of V.

From the temporal operator distribution rules we see that if we apply a
temporal operator to a whole program clause, the operator can be pushed inside
until we reach atomic formulas. This is why we did not consider applications of
temporal operators to whole program clauses.

Temporal operator non-commutativity rule: This rule says that the fol-
lowing;:

next; next; A < next; next; A

is not a valid axiom of the language when ¢ # j. The essence of this rule is that
in general, two operators next; and next; can not be interchanged when ¢ and
j are different.

Rigidness of variables: The following rule states that a temporal operator V
can “pass inside” V:

VVX)(A) & (YX)(VA)
The above rule holds because variables represent data-values composed of func-
tion symbols and constants which are independent of time (i.e. they are rigid).

Temporal operator introduction rules: The following rule states that if A
is a theorem of BT'L then VA is also a theorem of BT'L.

if - Athen FVA

The validity of the above axioms is easily proved using the semantics of BT L.
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5 A proof procedure for branching time logic programs

Cactus programs are executed using a resolution-type proof procedure called
BSLD-resolution (Branching-time SLD-resolution). For practical reasons, we
suppose that the underlying logic of Cactus programs is BT'L(S), where S is a fi-
nite subset of N (i.e. in the time tree every node has a finite number of branches).
BSLD-resolution is a refutation procedure which extends SLD-resolution [L1087],
and is similar to TiSLD-resolution [OW93], the proof procedure for Chronolog
programs. The following definitions are necessary in order to introduce BSLD-
resolution.

Definition3. A canonical temporal atomis aformulafirst next,, - - -next; A,
where ?1,...,4, € Sand n > 0, and A is an atom. A canonical temporal clause
1s a temporal clause whose temporal atoms are canonical temporal atoms.

As in Chronolog [Org91, OWD93], every temporal clause can be transformed
into a (possibly infinite) set of canonical temporal clauses. This can be done by
applying first next;, - - -next; , where i1,...,4, € S and n > 0, to the clause
and then using the axioms of BT L, presented in section 4.2, to distribute the
temporal reference so as to be applied to each individual temporal atom of the
clause; finally any superfluous operator is eliminated by applying the cancellation
rules of BT'L.

Intuitively, a canonical temporal clause is an instance in time of the corre-
sponding temporal clause.

Ezample 1. Consider the following Cactus program:

first p(0).
nexty p(s(X)) « p(X).
next; p(s(s(X))) « p(X).

The set of canonical temporal clauses corresponding to the program clauses
1s as follows:

The clause:

first p(0).
is the only canonical temporal clause corresponding to the first program clause
(because of axiom 1).

The set of clauses:

{first next;, - - -next,; nexty p(s(X)) ¢« first next,, ---next; p(X)]
neEN, i1,...,i, €S}

corresponds to the second program clause. Finally the set of clauses:

{first next;, - - -next; next; p(s(s(X))) ¢« first next,, ---next; p(X)]
neEN, i1,...,i, €S}

corresponds to the third program clause.
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The notion of canonical atom/clause is very important since the value of a
given formula of a branching time logic BTL(S), for some finite subset S of
N, in a temporal interpretation can be expressed in terms of the values of its
canonical instances, as the following lemma shows:

Lemmad4. Let A be a formula and I a temporal interpretation of BTL(S).
Er A if and only if =1 Ay for all canonical instances Ay of A.

BSLD-resolution is applied to canonical instances of program clauses and
goal clauses.

Definition 5. Let P be a Cactus program and G be a canonical temporal goal. A
BSLD-derivation from P with top goal G consists of a (possibly infinite sequence)
of canonical temporal goals Gy = G, G, ...., Gy, ... such that for all ¢ the goal
Gi4+1 1s obtained from the goal:

Gi = Al, ey Am—la Am, Am+1, ceeny Ap

as follows:

Ap, is a canonical temporal atom in G; (called the selected atom)
H + By, ... , By 1s a canonical instance of a program clause,
there is a substitution # such that § = mgu(Am, H)

Giy1 1s the goal:

Gi+1 = F(Al,....,Am_l,Bl, ...... ,BT,Am+1,....,Ap)9

e

Definition6. Let P be a Cactus program and (G be a canonical temporal goal.
A BSLD-refutation from P with top goal GG is a finite BSLD-derivation of the
null clause O from P with top goal G.

Let us now see an example of the application of BSLD-resolution.

Ezrample 2. Consider the program defining the predicate nat presented in the
introduction:

(1) first nat(0).
(2) nextg nat(Y) & nat(X),Y is 2%X+1.
(3) next; nat(Y) & nat(X),Y is 2*X+2.

A BSLD-refutation of the canonical temporal goal (in every derivation step the
selected temporal atom is the underlined one):

< first nexty next; nat(N)
is given below:

< first nexty next; nat(N)

using clause (3)

< first nexty nat(X), first nextg (N is 2 * X + 2)

521



using clause (2)

+— first nat(X;), first next; (X is 2 * X; + 1),
first nextg (N is 2 * X + 2)

(X, = 0) using clause (1)

¢ first next; (X is 2 *# 0 + 1), first nexty (N is 2 * X + 2)

(X = 1) evaluation of the built-in predicate is®

¢ first nextg (N is 2 * 1 + 2)

(N = 4) evaluation of the built-in predicate is

O

When some of the temporal atoms included in a goal clause are not canon-
ical, we say that we have an open-ended goal clause (e.g. the goal clauses in
section 3.2). The idea behind open-ended goal clauses was first introduced in
the context of Cronolog [OW93]. An open-ended goal clause G represents the
infinite set of all canonical queries corresponding to (G. Open-ended goal clauses
are used to imitate non-terminating computations. An implementation strategy
for executing an open-ended goal clause is by enumerating and evaluating (one
by one) the set of all canonical instances of the goal clause (e.g. by traversing in
a breadth-first way the time-tree).

6 Conclusions

Temporal programming languages, either functional [WA85, DW90, EAAJI1]
or logic [OM94, Org91, PG95], have been widely used as a means for describing
dynamic systems. However, most temporal languages use a linear notion of time
a fact that makes them unsuitable for certain types of applications.

In this paper we introduce the branching time logic programming language
Cactus which is based on a tree-like notion of time. We demonstrate that Cactus
is capable of expressing various problems in a natural way. Moreover, we show
that Cactus retains the semantic clarity of logic programming and has a simple
procedural interpretation.

The branching time concept has been particularly successful in the func-
tional programming domain [RW97, Ron94, Yag84, Tao94] and we believe that
a similar potential exists for the area of logic programming.
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