A Prolog like temporal reasoning system

T. Panayiotopoulos and M. Gergatsoulis
Institute of Informatics and Telecommunications
N.C.S.R Demokritos
15310 Aghia Paraskevi, Athens, Greece

e-mail : {themisp,manolis}@iit.nrcps.ariadne-t.gr

Abstract

An extension of the Horn clause logic programming
language (PROLOG), called Horn Temporal Refer-
ence Language (HTRL), suitable for temporal rea-
soning is presented in this paper. The syntax of the
HTRL language is given and its informal semantics
is briefly presented. An implementation through the
transformation of an HTRL program to an equivalent
Constraint Logic Program is also briefly presented.

Keywords
Temporal reasoning, logic programming, constraint
logic programming, uncertainty.

1 Introduction

The problem of representing time depended informa-
tion and reasoning about time has become an issue
of great concern for many researchers in Artificial In-
telligence during the last few years [8, 10]. Temporal
Logics[6] have found application in many domains,
such as, planning, temporal deductive data bases,
verification of concurrent systems, VLSI design, etc.
Some work has also been reported in Constraint Logic
Programming (CLP) and its application to Temporal
Reasoning [2, 3, 5].

Many practical systems which implement Tempo-
ral Logics have also been reported[8]. However, most
of them are implementations of Modal temporal log-
ics [6, 8].

In this paper we propose an extension of the
Horn clause logic programming language (PRO-
LOG), called Horn Temporal Reference Language
(HTRL), suitable for Temporal Reasoning. The
HTRL system is based on the Temporal Reference
Language (TRL), and handles temporal references
[9, 4]. Temporal references are labels assigned to
atoms, to express the time during which an atom
is true. Certain or uncertain time information may
be expressed through temporal references.

The rest of this paper i1s organized as follows. In
section 2, the syntax, the informal semantics and the
inference rules of the HTRL language are presented.

In section 3, the implementation of the HTRL sys-
tem 1s presented. Finally, in section 4, a conclusion
is given and some thoughts for future work are dis-
cussed.

2 Syntax, Semantics and de-
duction in HTRL

TRL [9] is a temporal logic which expresses tempo-
ral information in the form of temporal references.
Temporal references are labels of atoms and formu-
lae. In HTRL we assume that temporal references
are not used as labels of formulae, but only as labels
of atoms. In the following, familiarity 1s assumed
with the basic notions of logic programming[7] such
as term, atom, clause, resolution etc.

2.1 Definitions

An HTRL atom is either a classical atom or an
extended atom. An extended atom is of the form
Trep © A, where T)..; is a temporal reference and A
is a classical atom. Temporal references [4], are con-
structed by using temporal constants, temporal vari-
ables and the temporal constructors ‘<’ >’ [",]’.

The most general temporal reference 1s the uncer-
tain temporal interval. Uncertain temporal interval
is an expression of the form < [T1,7T3], [T3,T4] >,
where each of T; is either a temporal constant or
a temporal variable. In other words, an uncertain
temporal interval represents a temporal interval with
uncertain start and end points. A temporal refer-
ence < [T1,T5],[15,Ts] > is said to be consistent if
Ty <o, T35 <Ty, Ty <T3,T5 <Ty.

All other forms of temporal references are special
cases of the uncertain temporal reference [9]:

e a temporal point t, is an abbreviation of <
[t 2], [t,] >,

e a (certain) temporal interval, < 1,12 >, is an
abbreviation of < [t1, 1], [t2,12] > ,

e a lemporal instance, [t1,15], is an abbreviation of
< [t1, t2], [t t2] >.

Therefore, an uncertain temporal interval is a tem-
poral reference in temporal reference canonical form.

In HTRL, there are two different types of ex-
tended atoms: events and properties. The distinc-
tion and the corresponding semantics follow Allen’s
approach[1]. The difference between events and prop-
erties concerns their behaviour over temporal inter-
vals and not their syntax.

When a property is true over an interval it is nec-
essarily true over every subinterval of this interval,
ie. When Ty < T3 then < [T1, T3], [T5,Ta] >: A is
true iff there 1s at least an interval, < .57, 5% >, such
that T1 <S; <T,, and T3 <S2 <T4, during which A
is true.

When an event is true over an interval i1t is not nec-
essarily true over any subinterval of this interval, i.e.
When Ty < T3 then < [T, T5],[T5,T4] >: A is true
iff A is true over the temporal interval < 15, T35 >.

An HTRL clause has the form:

Ao — Al, ,An
where A; (i = 1,...,n) are HTRL atoms. An HTRL
canonical clause is an HTRL clause in which all tem-

poral references are in their canonical form. An
HTRL program is a set of HTRL clauses.

Example 1. In this example we have a promotion
problem, represented as an HTRL program. Notice
that there are certain temporal references but also
uncertain ones. Uncertain temporal references repre-
sent cases in which the knowledge about the occur-
rence of the corresponding atom is only known within
some temporal bounds.

+ declaration([hire/2, promote /3, leave /2,
rank /2], property).
1980 : hire(mary, lecturer).
1985 : promote(mike,lecturer, professor).
[1983,1984] : promote(mary, lecturer, professor).
1989 : leave(mary, professor).
[1988,1989] : leave(mike, professor).
< [T1,T2],[T3,T4] >: rank(Name, Rank) «
[T1,T2]: hire(Name, Rank),
[T3,T4] : leave(N ame, Rank).
< [T1,7T2],[T3,T4] >: rank(Name, Rankl) «
[T1,T2]: hire(Name, Rankl),
[T3,T4] : promote(Name, Rankl, Rank2).
< [T1,7T2],[T3,T4] >: rank(Name, Rank2) +
[T1,T2]: promote(Name, Rankl, Rank2),
[T3,T4] : leave(N ame, Rank2).

]:
]:

2.2 Inference rules

The inference system of HTRL language is a resolu-
tion based inference system. For classical atoms, we
retain SLD-resolution. For extended atoms we have
defined additional inference rules which impose con-
straints concerning the temporal references. These
rules are briefly described in the following lines:

2.2.1 Inference rules for property atom types

For a property there are two general inference rules,
each of which has some special cases. These inference
rules are sound in the semantics of HTRL, and their
intuitive meaning is given in the special cases.

1. < [ul,u2],[ud, ud] >: p,u2 < 2,13 <ulF
< [, 021, [13,14] >: p

2. {< [al,a2],[a3,ad] >: p,a2 < a3},
(< [b1,02], [b3,64] >: p, b2 < b3},
b2 < a3, a2 < b3,
(<L, 12), [13,14] >: p, 12 = min(a2, b2),
13 = max(a3, b3)}

Some Special cases of 1.1

la. < u2,ud >:p,
w2 <u3, 12 <I3,u2<[2)13<u3 bk
<I2,13>:p

The meaning of this rule is that for every prop-
erty which is true over a temporal interval <
u2,u3 >, it 18 also true over every temporal inter-
val < 12,13 > which is contained in < u2,u3 > i.e.?
{12,...,13}C{u2,...,u3}.

Ezample: From < 0,8 >: is_working(mary) infer
< 2,6 >: is_working(mary)

1b. < u2,u3 >:p,
w2 <u3, 13 <12,u2<[2)13<u3 bk
[13,12]: p

This means that for every property which is true
over a temporal interval < u2,u3 >, it is also true at
every temporal instance [13,12], which overlaps with

this interval, i.e. {u2,...,u3} N {13,...]12}# 0

Ezample: From < 0,8 >: is_working(mary) infer
[4,10] : és_working(mary)

le. [u3,u2]: p,ud < u2, 2 <1313 <ud,u2 <2+
[(3,02] : p

This is an inconsistent set of constraints, and there-
fore it is not an inference rule.

1d. [u3, u2]:p,ud <u2,13 < 12,13 <u3,u2 <2k
[(3,02] : p

This means that for every property which is true at
a temporal instance [u3,u2], it is also true at every
temporal instance [(3,{2], which contains the given
temporal instance, i.e. {u3 ... u2}C{l13,...12}

Ezample: From [4,10] : is_working(mary) infer
[2,11] : és_working(mary)

'The names u2, u3, 12, 13 are used in such a way so as to
make clear the relation of special cases to the corresponding
general case

?By {a,...,b} we represent an interval starting at a and fin-
ishing at b.

Some Special cases of 2.

2a. {< a2,a3 >:p, < b2,b3 >:p, b2 < a3,a2 < b3} +
< 12,13 >: p,12 = min(a2, b2),
13 = max (a3, b3)

The meaning of this rule is that for every prop-
erty which is true over two overlapping intervals, 1t
is also true over the concatenation of these intervals,

e {12,..,13}={a2,....a3}U{b2,... b3}.

Ezample: From < 0,8 >: is_working(mary) and
< 6,10 >: is_working(mary) infer
< 0,10 >: is_working(mary)

2.2.2 Inference rules for event atom types

For an event there are two inference rules, each of
which has also special cases (not presented here).

1. < [ul,u?], [u3,ud] >: p,u2 < ul,
I3 <u2,us <2k
< [1L,02],[13,14] >: p

1.e. for every event which is true over a temporal in-
terval < u2 u3 >, 1t is also true at every temporal
instance [[3,12], which contains the given temporal
interval, i.e. {u2,...,u3} C{13,....,12}.

2. < [ul,u2], [u3,ud] >: p,ud < u2,
I3 <us,u2 <2k
< [1L,02],[13,14] >: p

1.e. for every event which is true at a temporal in-
stance [u3,u2], it is also true at every temporal in-
stance [[3,(2], which contains the given temporal in-
stance, i.e. {u3,...,u2}C{l13,... 12}

3 Implementation Issues

An experimental implementation of the HTRL lan-
guage and its inference system has been developed.
The main idea of the implementation is to transform
an HTRL program to a Constraint Logic Program
(CLP). HTRL queries are also transformed to Con-
straint Logic Program queries.

3.1 Transforming an HTRL program

to a CLP program

Each HTRL clause is transformed into one or more
CLP clauses. In order to transform an HTRL clause
we must first transform it to an HTRL canonical
clause and consequently transform it into the cor-
responding a set of CLP clauses. The transforma-
tion of an HTRL clause into the corresponding CLP
clause(s) is indepentent from the transformation of
the other HTRL clauses of the same program. The
main idea of this transformation is as follows:
Let C be an HTRL clause of the form:

TO AO(R_O) — T1 ZAl(R_l), ,Tn : AH(R_H)

where Ty,..., T}, are temporal references, and Ry, ... R,
are tuples of arguments (n > 0). The canonical form

of C is:

< [To1, Toa], [Tos, Toa) >: Ao(Ro) —
< [Th1,Tis), [Tis, T1a] > A1 (Ra), ...,

< [Tnla TnZ]a [Tn3a Tn4] > An (Rn)

This clause 1s transformed into one or more CLP
clauses of the form:

AW, W2, W3, W4, Rp) <
consistency_constraints_for_Ty,
consistency_constraints_for_Ws,
resolution_step_constraints,
A(Th1,Tho, Ths, Tha, Ra), ..o

An (TnlaTHZa Tn3a Tn4a Rn)

In each CLP clause, three types of constraints may
be included: the goal consistency constraints, the
head consistency constraints and the resolution step
constraints.

The goal consistency constraints ensure the con-
sistency of the instantiated temporal reference of the
calling predicate. The head consistency constraints
ensure the consistency of the instantiated temporal
reference of the head predicate of the selected clause.
The resolution step constraints implement the infer-
ence rules of HTRL, and therefore provide the means
for making sound inferences. Resolution step con-
straints are produced from the constraints of the in-
ference rules, after performing all possible compile
time simplifications.

Example 2. In this example we transform two
HTRL clauses of the HTRL program of example 1
into CLP clauses. The HTRL clause:

/ + 1980 : hire(mary, lecturer) x /

is transformed into the following CLP clause:

hire(W1, W2, W3, W4, mary, lecturer) «
W1 <W2,WI<W3,W3< W4, W2< W4,
1980 < W2, W3 < 1980.
while the HTRL clause:

< [T1,7T2],[T3,T4] >: rank(Name, Rank) «
[T1,T2] : hire(Name, Rank),
[T3,T4] : leave(Name, Rank).
is transformed into the following two clauses in the
CLP program:

rank(W1, W2, W3, W4, Name, Rank) +
T2 <T4,T3 < T4,T1<T3,T1< T2,
WI<W2,WI<W3 W3< W4, W2< W4,
T2 <W2,T3<T2,W3<T3,
hire(T1,T2,T1,T2, Name, Rank),
leave(T'3,T4, T3, T4, Name, Rank).

rank(W1, W2, W3, W4, Name, Rank) +
T2 <T4,T3< T4,T1 < T3,T1< T2,
WI<W2,WI<W3 W3< W4 W2 < W4,
W3 < T3,T2< W2,T2 < T3,
hire(T1,T2,T1,T2, Name, Rank),
leave(T'3,T4, T3, T4, Name, Rank).

3.2 The Constraint Solver

An experimental Symbolic Constraint Solver (SCS)
has been constructed for the manipulation of the con-
straints. SCS has been written in PROLOG and
operates at the metalevel, i.e. the constraints are
provided as data to the SCS program which solves
or propagates them according to the instantiation of
their arguments. Unresolved constraints are propa-
gated to the next resolution step. Failure of the SCS
to satisfy the constraints results to failure of the cor-
responding alternative clause of the HTRL program.

Example 3 (continued from example I). In this ex-
ample we provide queries to the transformed program
of example 1, and receive the following answers.

Query < T1,T2>: rank(mary, R).
Answer :< 1980, 1983 >: rank(mary, lecturer).
Answer :< 1984,1989 >: rank(mary, professor).

Query + [T1,T2]: rank(N,professor).
Answer : [1985,1988] : rank(mike, professor).
Answer : [1984,1989] : rank(mary, professor).

In general, the answer to a query consists of some
values for the variables of the query together with
a (possibly empty) simplified set S of output con-
straints. The constraints in S refer to the variables
of the temporal references of the query. S is consis-
tent (otherwise the query would have fail). Often, S
can be expressed as a properly instantiated temporal
reference (this is the case in the queries of the exam-
ple 2), but sometimes this is not possible and S is
returned as a simplified set of constraints.

The inference system that we have already imple-
ment for HTRL is sound but it is not (at present)
complete. This means that not all HTRL atoms
which are logical consequences of an HTRL program
according to the semantics of the HTRL language,
are provable by our system.

4 Conclusions

We have developed a temporal reasoning system,
called HTRL, which is based on the semantics of a
previously proposed temporal logic called TRL.
HTRL is a practical tool, as it handles time as a
first order component, but it 1s also expressive enough
to represent some kind of temporal uncertainty about
the future and the past. Programming with HTRL

resembles with Logic Programming, but it 1s possible
to incorporate pure classical predicates (without any
temporal references) into an HTRL program.

We are also working on practical and large ex-
amples concerning planning, temporal deductive
databases, etc. We are planning to develop a com-
plete inference system and also introduce measures
of uncertainty.

References

[1] J. F. Allen.
tion and time.

154, 1984.

Towards a general theory of ac-
Artificial Intelligence, 23:123—

[2] C. Brzoska. Temporal logic programming and
its relation to constraint logic programming. In
V. Saraswat and K. Ueda, editors, Logic Pro-
gramming: Proc. of the 1991 International Sym-
posium, pages 661-677. MIT Press, 1991.

[3] C. Brzoska. Temporal logic programming with
bounded universal modality goals. In D. S.
Warren, editor, Proc. of the Tenth International
Conference on Logic Programming, pages 239—

256. MIT Press, 1993.

[4] K. T. Frantzi, T. Panayiotopoulos, and C. D.
Spyropoulos. Extending Allen’s relations for un-
certain time points and uncertain intervals. In
7th Irish Conference on Artificial Intelligence
and Cognitive Science (AICS’94), Sept. 1994.

[6] T. Fruehwirth. Temporal reasoning with con-
straint handling rules. Technical Report ECRC-
94-05, ECRC, February 1994.

[6] D. M. Gabbay, I. Hodkinson, and M. Reynolds.
Temporal Logic: Mathematical foundations and
computational aspects. Clarendon Press-Oxford,

1994.

[7] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1987.

[8] M. A. Orgun and W. Ma. An overview of tem-
poral and modal logic programming. In D. M.
Gabbay and H. J. Ohlbach, editors, Proc. of
the First International Conference on Tempo-
ral Logics (ICTL’94), Lecture Notes in Artifi-
cial Intelligence (LNAT), Vol 827, pages 445-479.
Springer-Verlag, 1994.

[9] T. Panayiotopoulos and C. D. Spyropoulos. Trl:
A formal language for temporal references. In
H. J. Olbach, editor, Temporal Logic, Proceed-
wngs of the ICTL Workshop, pages 99-109, 1994.
MPI-1-94-230.

[10] L. Vila. A survey on temporal reasoning in artifi-
cial intelligence. AT Communications, 7(1):4-28,
1994.

