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Abstract. RDF has been proposed by W3C as a metadata model and
language for representing information about resources in WWW. In this
paper we introduce Multidimensional RDF (or MRDF), as an exten-
sion of RDF, suitable for representing context-dependent RDF data. In
MRDF we have a set of dimensions whose values define different contexts
(or worlds) under which different parts of an RDF graph may hold. We
define the semantics of MRDF in terms of the semantics of RDF. Ad-
ditionally, we propose appropriate extensions, suitable for representing
MRDF graphs in triples notation and RDF/XML syntax. Finally, we
demonstrate how an MRDF graph, embodying a single time dimension,
can be used to model the history of a conventional RDF graph.
Keywords: RDF databases, RDF model, Semantic Web, versioning.

1 Introduction

The success of the Internet and the Web during the last few years led to an
explosion of the amount of data available. Managing and processing such a huge
collection of interconnected data proved to be difficult due to the fact that the
Web lacks semantic information. The Semantic Web is a proposal to build an
infrastructure of machine-readable metadata (expressing semantic information)
for the data on the Web.

In 1998, W3C proposed Resource Description Framework (RDF) [5], a meta-
data model and language which can serve as the basis for such infrastructure.
Apart from being a metadata model and language, RDF can also express seman-
tics, empowering the vision of semantic Web. However, RDF falls short when
it comes to represent multidimensional information; that is, information that
presents different facets under different contexts. Actually, there are many cases
where variants of the same information do exist. As a simple example imagine
a report that needs to be represented at various degrees of detail and in various
languages. A solution would be to create a different document for every possible
combination. Such an approach is certainly not practical, since it involves ex-
cessive duplication of information. What is more, the different variants are not
associated as being parts of the same entity. A similar problem arises when we
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want to represent the history of a changing RDF graph. In this case, we want
to retain information about the past states of the graph as well as about the
sequence of changes applied to this graph. Querying on and reasoning about
context dependent information is also important.

To the best of our knowledge there is a limited number of papers [19, 14]
on this subject. Quite recently, in [14], a temporal extension of RDF, based on
the idea of assigning timestamps to RDF triples, is proposed. The same idea
is employed in [19] where a technique to track changes of RDF repositories is
presented.

In this paper we demonstrate how RDF can be extended so as to be suitable
for expressing context-dependent information. The extension that we propose,
called Multidimensional RDF (or MRDF in short), is capable of representing in
a compact way multiple facets of information related to the same RDF triple.
MRDF employs a set of parameters, called dimensions, that are used to deter-
mine specific environments, called worlds, under which specific pieces of infor-
mation hold. Conventional RDF graphs, holding under specific worlds, called
snapshots, can be easily extracted from MRDF graphs. As we demonstrate,
MRDF is suitable for representing the history of conventional RDF graphs. Our
approach is general enough to be used with more rich formalisms such as RDFS
or OWL based ontologies which may also change over time.

The work presented in this paper is based on previous results on providing
multidimensional extensions to OEM and XML [20, 11, 21]. The main contribu-
tions of this paper can be summarized as follows:

1. A multidimensional extension of RDF, called MRDF, is proposed and its
semantics is defined in terms of the semantics of RDF.

2. The notions of snapshots, canonical forms, and projections of MRDF-graphs
are defined and some useful properties are discussed.

3. Reification is extended so as to apply to MRDF statements.
4. It is demonstrated that MRDF graphs can be used to represent the history

of (conventional) RDF graphs. Basic change operations on RDF graphs are
proposed, and it is shown how their effect on RDF triples, can be represented
in MRDF-graphs.

5. Extensions of the Triples Notation and the XML/RDF syntax suitable for
representing MRDF graphs are proposed.

The rest of the paper is organized as follows: In Section 2, some preliminar-
ies are given. In Section 3, Multidimensional RDF is introduced and some of
its properties are discussed. In Section 4, the notions of snapshots, projections
and canonical forms of MRDF graphs are introduced. In Section 5, it is illus-
trated how reification can be extended to MRDF statements. In Section 6, the
semantics of MRDF are discussed. In Section 7, extensions of Triples Notation
and XML/RDF syntax suitable for representing MRDF graphs are proposed. In
Section 8, it is demonstrated how an MRDF graph with a single time dimension
can be used to represent the history of conventional RDF graphs. In Section 9,
it is shown how history graphs can be stored in RDBMS. In Section 10, related
work is discussed. Finally, in Section 11 some hints for future work are given.



2 Preliminaries

Resource Description Framework (RDF) [1, 5] has been proposed by W3C as a
language for representing information about resources in the World Wide Web.
It is particularly intended for representing metadata about Web resources. RDF
is based on the idea of identifying resources using Web identifiers (called Uniform
Resource Identifiers, or URIs), and describing them in terms of simple properties
and property values. This enables RDF to represent simple statements about
resources as a graph of nodes and arcs representing the resources, with their
properties and values.

2.1 RDF graph

In this subsection we give an abstract representation of the RDF model as graphs,
based on some definitions borrowed from [13]. This model consists of an infinite
set U (called the RDF URI references); an infinite set B = {Nj : j ∈ N}
(called the blank nodes); and an infinite set L (called the RDF literals). A triple
(v1, v2, v3) ∈ (U ∪B)×U × (U ∪B ∪L) is called an RDF triple. In such a triple,
v1 is called the subject, v2 the predicate (also called property), and v3 the object.
Each triple represents a statement of a relationship between the things denoted
by the nodes that it links.

Definition 1. An RDF graph is a set of RDF triples. An RDF-subgraph is a
subset of an RDF-graph. The universe of an RDF-graph G, universe(G), is the
set of elements of (U ∪B ∪L) that occur in the triples of G. The vocabulary of
G is the set universe(G) ∩ (U ∪ L). An RDF-graph is ground if it has no blank
nodes.

Graphically, RDF graphs are represented as follows: each triple (a, b, c) is
represented by a

b−→ c. Note that the set of arc labels may have non-empty
intersection with the set of node labels. The direction of the arc is significant: it
always points toward the object.

A map is a function µ : (U ∪B ∪ L) → (U ∪B ∪ L) such that µ(u) = u and
µ(l) = l for all u ∈ U and l ∈ L. If G is a graph then µ(G) is defined as follows:
µ(G) = {(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G}. A map µ is consistent with an RDF-
graph G if µ(G) is also an RDF-graph, i.e. if (s, p, o) ∈ G then µ(s) ∈ (U ∪ B),
and µ(p) ∈ U . In this case we say that µ(G) is an instance of G. An instance
µ(G) is a proper instance of G if µ(G) has less blank nodes that G.

Two graphs G1, G2 are said to be isomorphic, denoted by G1
∼= G2, if there

are maps µ1, µ2 such that µ1(G1) = G2, and µ2(G2) = G1.
Let G1, G2 be RDF-graphs. Then, the union of G1, G2, denoted by G1∪G2,

is the set theoretical union of their sets of triples. The merge of G1, G2, denoted
by G1 + G2, is the union G1 ∪G′2, where G′2 is an isomorphic copy of G2 whose
set of blank nodes is disjoint with the set of blank nodes of G1.

The assertion of an RDF triple says that some relationship, indicated by the
predicate, holds between the things denoted by the subject and the object of



the triple. The assertion of an RDF graph amounts to asserting all the triples
in it, so the meaning of an RDF graph is the conjunction (logical AND) of the
statements corresponding to all the triples it contains. A formal account of the
meaning of RDF graphs is given in [2].

Example 1. A fragment of an RDF-graph representing information about a book
is shown in Figure 1.
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Fig. 1. An RDF-graph.

2.2 RDF triples notation

Sometimes it is convenient instead of drawing RDF graphs, to have an alternative
way of writing down their statements. In the triples notation, each statement in
the graph is written as a simple triple of the order, subject, predicate, and object.

Example 2. The statements in the RDF-graph of Figure 1 would be written in
the triples notation as:

LP_book title "Logic Programming"

LP_book price "15 EURO"

LP_book author _:abc

_:abc email "manolis@ionio.gr"

_:abc name "Manolis Gergatsoulis"

_:abc telephone _:def

_:def type "mobile"

_:def value "+30 9999999999"

2.3 RDF/XML Syntax

RDF also provides an XML-based syntax (called RDF/XML) for encoding and
exchanging RDF graphs [1, 4].



Example 3. The RDF-graph of Figure 1 is written in RDF/XML as follows:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://www.ionio.gr/LP_book">

<title>Logic Programming</title>

<price>15 EURO</price>

<author rdf:nodeID="abc"/>

</rdf:Description>

<rdf:Description rdf:nodeID="abc"/>

<email>manolis@ionio.gr</email>

<name>Manolis Gergatsoulis</name>

<telephone rdf:nodeID="def"/>

</rdf:Description>

<rdf:Description rdf:nodeID="def"/>

<type>mobile</type>

<value>+30 9999999999</value>

</rdf:Description>

</rdf:RDF>

3 Adding Dimensions to RDF-graphs

In this section we introduce the notion of Multidimensional RDF graph (MRDF
graph in short). In a Multidimensional RDF graph, contexts may be used to
determine the circumstances under which RDF triples are present or not in a
graph. RDF triples whose existence depends on a number of dimensions are
called multidimensional RDF triples.

3.1 Dimensions and Worlds

The notion of world is fundamental in our approach (see also [11, 20]). A world
represents an environment under which RDF data obtain a substance. A world
is determined by assigning values to a set S of dimensions.

Definition 2. Let S be a set of dimension names and for each d ∈ S, let Dd,
with Dd 6= ∅, be the domain of d. A world w is a set of pairs (d, u), where d ∈ S
and u ∈ Dd such that for every dimension name in S there is exactly one element
in w. The set of all possible worlds is denoted by U .

In Multidimensional RDF, a triple may have different objects under different
worlds. To specify sets of worlds under which a specific node plays the role of the
object of a triple we use syntactic constructs called context specifiers. Context
specifiers qualify the so called context arcs which determine the resource that
plays the role of the object of a specific property and the worlds under which
this holds. The different resources that may be objects of the same property
under different worlds are called the facets of that object. In the rest of this
paper, by W(c) we denote the set of worlds specified by a context specifier c.



Two context specifies c1 and c2 are said to be equivalent if they represent the
same set of worlds i.e. W(c1) = W(c2). Two context specifiers c1 and c2 are said
to be mutually exclusive if and only if W(c1) ∩W(c2) = ∅.

In this paper we consider the following syntax for context specifiers: A context
specifier consists of one or more context specifier clauses separated by “|”. Each
context specifier clause consists of one or more dimension specifiers separated
by comma. Thus a context specifier clause is of the form:

dimension 1 specifier, ..., dimension m specifier

where dimension i specifier, 1 ≤ i ≤ m, is a dimension specifier of the form:
dimension name specifier operator dimension value expression

A specifier operator is one of =, ! =, in, not in. If the specifier operator is
either = or ! =, the dimension value expression consists of a single dimension
value. Otherwise, if the specifier operator is either in or not in, the dimension
value expression is a set of values of the form {value1, . . . , valuek}. For linear
and discrete domains we will also use the notation {a..b} for dimension value
expressions to denote the set of all values x such that a ≤ x ≤ b.

Example 4. The following are context specifiers:

1) [time=7:45]
2) [lang=Greek, detail in {low,medium} | lang=French, detail=high]
3) [currency in {EURO,USD}, customer_type = student]
4) [season != summer, weekday not in {Saturday,Sunday}]

Notice that the set of worlds represented by the second context specifier is
{(lang = greek, detail = low), (lang = greek, detail = medium),
(lang = French, detail = high)}, while the set of worlds represented by the
third context specifier is: {(currency = EURO, customer type = student),
(currency = USD, customer type = student)}. Concerning the fourth context
specifier we have to take into account the domains of the dimensions season
and weekday in order to find the set of worlds that it represents.

Context specifiers impose constraints that restrict the set of worlds under
which an entity holds. In this sense, if a context specifier does not contain a
dimension specifier for a specific dimension then no constraint is imposed on the
values of this dimension. Thus, the context specifier [ ] represents the set of all
possible worlds U .

3.2 Multidimensional RDF-graphs

In Multidimensional RDF-graphs we will use the following sets of symbols: a set
U of RDF URI references, a set B of blank nodes, a set L of RDF literals, a set
M of multidimensional nodes, and a set C of context specifiers.

A triple (v1, v2, v3) ∈ (U ∪ B) × U × (M ∪ U ∪ B ∪ L) is called statement
triple, while a triple (v1, c, v3) ∈ M × C × (U ∪B ∪ L) is called a context triple.

Definition 3. A Multidimensional RDF-graph (MRDF-graph) is a set St ∪Ct,
where St is a set of statement triples and Ct is a set of context triples, such that:



1. For every context triple (v3, c, v4) ∈ Ct there exist a node v1 ∈ (U ∪ B) and
a node v2 ∈ U such that (v1, v2, v3) ∈ St.

2. For every statement triple (v1, v2, v3) ∈ St for which v3 is a multidimensional
node, there exist a context specifier c ∈ C and a node v4 ∈ (U ∪B ∪L) such
that (v3, c, v4) ∈ Ct.

Example 5. A Multidimensional RDF-graph is shown in Figure 2. This graph is
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Fig. 2. A Multidimensional RDF-graph.

a variant of the RDF graph in Figure 1. Some parts of this graph are context-
dependent. In particular, we have two dimensions; the dimension time (abbre-
viated as t) and the dimension customer type (abbreviated as ct). The value
of the property price of the book is 15 EURO for all worlds in which the value
of the dimension ct is student while the value of the same property is 20 EURO
for all worlds in which the value ct is library. The value of the property email
is time-dependent. This value is manolis@ionio.gr for the time points in the
interval {start..t1-1}, where the reserved words start represents the begin-
ning of time, while the value of the property is mgerg@otenet.gr for the time
points in the interval {t1..now}, where now represents the current time. Finally,
notice that the property telephone has meaning only under the worlds in which
the value of the dimension ct is library and the value of the dimension t is
in the interval {t2..now}. This means that from the time point t2 the mobile
telephone of the author is available only for customers that are libraries.

Notice that in an MRDF-graph statement triples are represented by thin
lines while context triples are represented by thick lines.

An MRDF graph G is said to be deterministic, if for every multidimensional
node m in G, the context specifiers of all context triples departing from m
are mutually exclusive each other. Although non-deterministic MRDF-graphs



may have interesting properties, in this paper we focuss mainly on deterministic
MRDF-graphs.

4 Snapshots, Projections and Canonical forms of MRDF
graphs

4.1 RDF snapshots of MRDF-graphs

A Multidimensional RDF-graph G can be seen as a compact representation of a
set of conventional RDF-graphs called the snapshots of G:

Definition 4. Let G = (St∪Ct) be an MRDF-graph and w be a world. We define
the snapshot of G under w, denoted by Snap(G,w), as follows: Snap(G,w) =
{(r1, p, r2) | r2 ∈ U ∪B ∪ L and (r1, p, r2) ∈ St} ∪ {(r1, p, r2) | ∃m ∈ M, ∃c ∈
C such that (r1, p, m) ∈ St and (m, c, r2) ∈ Ct and w ∈ W(c)}.

Notice that to each multidimensional node of a deterministic MRDF-graph
corresponds at most one RDF triple at each world. In non-deterministic MRDF-
graphs, multiple RDF triples may correspond to every multidimensional node.

According to the above definition, a multidimensional RDF-graph G can be
seen as a compact representation of the set Snap(G,U) = {Snap(G,w) | w ∈ U},
where U is the set of all possible worlds, that is, Snap(G,U) represents the set
of all (conventional) RDF-graphs each of them holding under a specific world.

Example 6. Consider the world w = {t = t2+, ct = library}, where t2+ is
a time point such that t1 < t2 < t2+. Then the snapshot of the MRDF-graph
in Figure 2 under the world w, is the RDF-graph shown in Figure 3.
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Fig. 3. A snapshot of the Multidimensional RDF-graph in Figure 5.

Based on the notion of snapshots we define equivalence of MRDF-graphs:

Definition 5. Let G1 and G2 be MRDF graphs. We say that G1 is equivalent
with G2 if and only if for every world w, Snap(G1, w) ∼= Snap(G2, w).



4.2 Projections of MRDF graphs

Another useful operation on MRDF-graphs is projection with respect to a set
of dimensions. Let S be a set of dimensions and c a context specifier. Then
the projection of a context specifier c with respect to S is a context specifier
c′ obtained from c by eliminating all dimension specifiers of c whose dimension
name does not belong to S.

Definition 6. Let G = (St ∪ Ct) be a multidimensional RDF-graph and S be
a set of dimensions. Then the projection of G with respect to S, denoted by
Proj(G,S), is defined as follows:

Proj(G,S) = St ∪ {(m, c′, r2) | (m, c, r2) ∈ Ct and
c′ is the projection of c with respect to S}.

Projecting an MRDF-graph means that we remove all constraints concerning
the values of the dimensions not belonging to S. Notice that the projection of a
deterministic MRDF-graph G, may be a non-deterministic MRDF-graph.

4.3 Canonical form of MRDF graphs

In this section we define the notion of canonical form of an MRDF graph. In a
canonical MRDF graph all statement arcs point to multidimensional nodes.

Definition 7. An MRDF-graph G = (St ∪ Ct) is said to be in canonical form if
for every statement triple (v1, v2, v3) ∈ St, v3 is a multidimensional node.

Definition 8. Let G = (St∪Ct) be an MRDF-graph. The canonical representa-
tion Can(G) of G is an MRDF-graph obtained from G by replacing each state-
ment triple (v1, v2, v3) ∈ St for which v3 6∈ M , by a pair of a statement triple
and a context triple of the form (v1, v2,m) and (m, [ ], v3) respectively, where m
is a fresh multidimensional node in M .

This construction of the canonical representation of an MRDF-graph accord-
ing to the above definition is shown in Figure 4. Recall that the context specifier
[ ] represents the set of all possible worlds U .
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Fig. 4. Transforming an MRDF-graph in canonical form.

Example 7. The canonical representation of the graph in Figure 2 is shown in
Figure 5. This graph is obtained by replacing each statement triple in the graph of
Figure 2 leading to a non-multidimensional node, by a pair of a statement triple
followed by a context triple as described above (and is depicted in Figure 4).
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Fig. 5. The canonical representation of the MRDF-graph in Figure 2.

The following lemma demonstrates that an MRDF-graph and its canonical
representation are equivalent graphs.

Lemma 1. Let G be an MRDF-graph and Can(G) be its canonical representa-
tion. Then G and Can(G) are equivalent.

Proof. It is easy to prove that for every world w, Snap(G,w) ∼= Snap(Can(G), w).

5 Reification in Multidimensional RDF-graphs

RDF applications often need to describe other RDF statements or, in general, to
express statements about other statements. It is useful, for instance, to record in
RDF, information about when statements were made, or who made them. RDF
embodies [1] a built-in vocabulary intended for describing RDF statements. A
statement description using this vocabulary is called a reification of the state-
ment. The RDF reification vocabulary consists of the type rdf:Statement, and
the properties rdf:subject, rdf:predicate, and rdf:object. The use of this
vocabulary to describe RDF statements is shown in Figure 6 where the triple
(R1, P, R2) shown in Figure 6(a) is represented by the RDF graph in Figure 6(b).
This graph says that the anonymous resource is an RDF statement, the subject
of the statement is R1, its predicate is P , and its object is R2.

For MRDF an extension of the RDF reification mechanism is needed. Such
an extension is shown in Figure 7. Since in MRDF we may have multiple facets
of an object of a triple, corresponding to different sets of worlds, the property
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Fig. 6. Reification in RDF.

rdf:object is now represented by a statement triple whose arc points to a mul-
tidimensional node. From this multidimensional node depart different context
triples each of them leading to a different facet of the statement’s object. No-
tice also that we now use a type mrdf:Statement which states that the reified
statement is not a conventional but a multidimensional one.
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Fig. 7. Reification in Multidimensional RDF.

It is important to note that the definition of snapshots has to be slightly
modified so as to take into account the presence of reification. However, we will
not discuss it further here due to space limits.

6 Semantics of MRDF

In this section we define the semantics of MRDF in terms of the semantics of
RDF.



Definition 9. Let F be an MRDF-graph, G be an RDF-graph, w be a world,
and W be a set of worlds. We say that F entails G in the world w, denoted
by F |=w G, if and only if Snap(F, w) |= G. We say that F entails G in a
set of worlds W , denoted by F |=W G, if and only if for every world w ∈ W ,
Snap(F, w) |= G.

The following lemma can be easily proved.

Lemma 2. Let F be an MRDF-graph and Can(F ) be its canonical form. Then
for every RDF graph G and every world w, F |=w G if and only if Can(F ) |=w G.

7 Triples Notation and RDF/XML syntax for MRDF

Syntactic constructs suitable for representing MRDF-graphs are presented in
this section.

7.1 Extended Triple Notation

In order to express MRDF graphs in triples notation it is necessary to extent this
notation in order to be capable of representing context triples. The extension
that we propose retains the basic structure of the triples but allows their third
component to be a list, called object list. Object list is used when the object of
a statement triple is a multidimensional node. In this case the third component
contains pairs of values. The first value of each pair is a context specifier while
the second value is the object (resource/literal) corresponding to that specifier.

Example 8. The representation in the extended triple notation of the MRDF
graph in Figure 2 is as follows:

LP_book title "Logic Programming"

LP_book price [([ct = student],"15 EURO"), ([ct = library],"20 EURO")]

LP_book author _:abc

_:abc email [([t in {start..t1-1})],"manolis@ionio.gr"),

([t in {t1..now}],"mgerg@otenet.gr")]

_:abc name "Manolis Gergatsoulis"

_:abc telephone [([t in {t2..now},ct = library],_:def)]

_:def type "mobile"

_:def value "+30 9999999999"

7.2 RDF/XML syntax for MRDF

In order to express MRDF in RDF/XML syntax we need an extension of XML
capable of expressing contexts. Such an extension of XML is Multidimensional
XML (or MXML), which has been proposed in [11]. In Example 9 below we
illustrate how MRDF can be expressed in MXML/RDF syntax.

Example 9. The following RDF/MXML document represents the MRDF graph
in Figure 2:



<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://www.ionio.gr/LP_book">

<title>Logic Programming</title>

<@price>

[ct=student]<price>15 EURO</price>[/]

[ct=library]<price>20 EURO</price>[/]

</@price>

<author rdf:nodeID="abc"/>

</rdf:Description>

<rdf:Description rdf:nodeID="abc"/>

<@email>

[t in {start..t1-1}]<email>manolis@ionio.gr</email>[/]

[t in {t1..now}]<email>mgerg@otenet.gr</email>[/]

</@email>

<name>Manolis Gergatsoulis</name>

<@telephone>

[t in {t2..now},ct=library]<telephone rdf:nodeID="def"/>[/]

</@telephone>

</rdf:Description>

<rdf:Description rdf:nodeID="def"/>

<type>mobile</type>

<value>+30 9999999999</value>

</rdf:Description>

</rdf:RDF>

It should be noted that instead of using MXML we can use conventional (but
more verbose) XML syntax for representing MRDF-graphs (see [10]).

8 Representing changes in RDF graphs using MRDF

As described previously, MRDF is a general formalism and powerful enough
to represent context-dependent RDF data that may occur in real world RDF
applications. In this section we demonstrate that MRDF graphs can be used as
a formalism for tracking the history of conventional RDF-graphs. We assume the
following scenario: the user manipulates an RDF graph and applies changes to
it, at specific time points. The changes are described through specific primitives
called basic change operations. In order to keep track of the sequence of changes
and in particular of the sequence of the (conventional) RDF graphs obtained
by applying these changes, the system keeps a Multidimensional RDF graph,
called the History Graph, which encodes all these changes applied by the user to
the conventional RDF graph. The History Graph employs a single dimension t
representing time. For this dimension, we assume a time domain T which is linear
and discrete. We also assume a reserved value start, such that start < t for
every t ∈ T , representing the beginning of time, and a reserved value now, such
that t < now for every t ∈ T , representing the current time. Notice that, in our
scenario, the user is only capable to apply change operations on a conventional
RDF graph being unaware of the History Graph that lies beneath.



8.1 Basic Change Operations on RDF triples

We consider three primitive change operations on RDF graphs, namely up-
date, delete, and insert, and demonstrate how their effect on RDF-graph can
be mapped into changes on the underlying History Graph:
a) Update: Update operation can be used to change the value of a property (i.e.
the object of a triple). Updating a triple can be seen (at the level of the RDF
graph being updated) as the replacement of the triple with another triple which
has the same subject and predicate but different object. The way that update
operation affects the underlying History Graph is depicted in Figure 8(a). The
value of the property P in the triple on the left part of the figure is updated at
time t1 from R2 to the new value R3. The MRDF representation of this operation
is shown on the right side of the figure. The multidimensional node has now two
facets. The first one is valid in all time points of the interval {start..t1-1},
while the second is valid for all time points in the interval {t1..now}.
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Fig. 8. Representation of the basic change operations in the History Graph.

Note that a subsequent update of the same statement at a time point t2
will be represented in the History Graph as follows: a) by simply adding a new
context triple departing from the same multidimensional node and holding in the
interval {t2..now} and b) by changing the value of the time dimension t of the
most recent context triple from {t1..now} to {t1..t2-1}. Note also that the
resource R3 may be a new resource which is introduced by the update operation
or it may be a resource that already exists in the graph. In both cases the update
operation results in adding a context arc from the multidimensional node to R3.



b) Delete: The deletion of a triple (R1, P, R3) from the RDF graph at time t2,
is represented in the History Graph by simply changing the end time point of
the most recent interval from now to t2-1, as shown in Figure 8(b). Note that,
if the deleted triple is a conventional triple in the History Graph, then deletion
is modeled by first obtaining the canonical form of the triple and then applying
the process described above to the caninical triple as described above.
c) Insert: As depicted in Figure 8(c), the new triple (R1, P, R2) inserted at the
time point t1, is modeled in the History Graph by adding a new statement triple
followed by a single context triple holding during the interval {t1..now}.

Notice that the triple being inserted on the RDF graph may refer either to
resources (subject and/or object) that already exist in the RDF-graph or to new
resources that are added by the insert operation.

9 Storing the History Graphs in RDBMS

A simple relational database schema can be easily designed for storing the His-
tory Graphs using an RDBMS. For this we assume that the graph is in its
canonical form. Such a graph can be stored in a database which has two rela-
tions, namely statement and context to store the statement and the context
triples respectively. The schema of these relations is as follows:
statement(Subject,Predicate,MultidimensionalNode): where Subject is the
subject, Predicate is the predicate and MultidimensionalNode is the multidi-
mensional node identifier.
context(MultidimensionalNode,Object,S,E): where MultidimensionalNode
is the multidimensional node identifier from which the arc departs, Object is the
object, S is the start time point and E is the end time point of the time interval.

Notice that this schema is appropriate only for MRDF which has only one
dimension which takes as values time intervals.

Concerning the RDF/XML syntax it is important to note that in the case of
the History Graph, where we have only a single time dimension, we could use
(instead of MXML), a temporal extension of XML. Such a temporal extension
of XML can be found in [22, 23], where two extra attributes are added to XML
elements, namely vstart and vend, representing the end points of the time
interval in which this elements version is valid.

10 Related Work

The Multidimensional extension to RDF proposed in this paper is based on
similar ideas to that on which Multidimensional OEM [20] and the Multidimen-
sional XML [11] are based. However, to the best of our knowledge, there is no
other research work in the direction of incorporating dimensions in RDF. Quite
recently [14], Temporal RDF, a transaction time extension of RDF has been
proposed. However, our approach is more general than Temporal RDF which
may be considered as a special case of Multidimensional RDF, since we allow
multiple dimensions (and even multiple time dimensions).



To the best of our knowledge, only a few papers refer to the problem of
representing changes in RDF databases. One approach to this problem has been
proposed in [19]. Their model is based on the admission that an RDF statement is
the smallest manageable piece of knowledge in an RDF repository. They propose
only two basic operations, addition and removal, since they argue that an RDF
statement cannot be changed, it can only be added or removed. In their approach,
they used versions as the labeled states of the repository. However, our approach
is more general and flexible than the approach in [19] as besides addition and
deletion we also introduce an update operation. In this way different resources
that are in fact different versions of an object of a property are grouped together
and its relationship is recorded. Besides, our representation formalism is more
general as it allows multiple dimensions (which might be multiple times such as
valid time or transaction time). Consequently, in our approach one can encode
multiple versioning information not only with respect to time but also to other
context parameters such as language, degree of detail, geographic region etc.

Some related research to the problem of RDF versioning has also been done
in the field of ontology versioning. In [16, 15], Ontoview, a web-based manage-
ment system for evolving ontologies in the Web, is used. Ontoview has the ability
to compare ontologies at a structural level. It finds changes in ontologies and it
visualizes them, helping the user to specify the conceptual implication of the
differences. In [17] a component-based framework for ontology evolution is pro-
posed. This framework integrates a description of different representations about
change information. Thus, they present an ontology of change operations, which
is the kernel of their framework. The problem of managing (storing, retrieving
and querying) multiple versions of XML documents is also examined in [8, 9].
Recently, an approach of representing XML document versions was proposed [22,
23]. The basic idea is to add two extra attributes, namely vstart and vend, that
represent the time interval in which the corresponding version of the element is
valid. Temporal extensions of XML have also been proposed in [6, 12].

The problem of representing and querying changes in semistructured data
has also been studied in [7], where Delta OEM (DOEM in short), a graph
model that extends OEM with annotations containing temporal information,
was proposed. Four basic change operations on OEM graphs, namely creNode,
updNode, addArc, and remArc are considered. Those operations are mapped to
annotations, which are tags attached to nodes or edges, containing information
that encodes the history of changes for these nodes or edges. Recently [21], Mul-
tidimensional OEM [20], has been proposed as a formalism for representing the
history of time-evolving semistructured data. Finally, in [10], the authors pro-
pose the use of Multidimensional XML [11] for the representation of the history
of XML documents.

11 Discussion and Future Work

Investigation of other real application domains to demonstrate usefulness of mul-
tidimensional RDF is between our plans for future work. An attempt to explore



such applications is described in [18], where the problem of representing and
manipulating time-dependent information in collection-level cultural metadata
is investigated. In that paper, MRDF employing two independent time dimen-
sions is used as a formalism to enriches a metadata application profile for the
collection-level description of cultural collections, with the ability of time repre-
sentation and manipulation.

Investigation of query languages and inference systems for MRDF repositories
when RDFS vocabulary is used [3], are important problems for future work. The
study of the semantics of non-deterministic MRDF-graphs and their applications
are also interesting problems.
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