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Abstract. The problem of optimizing queries in the presence of materi-
alized views and the related view-design problem have recently attracted
a lot of attention. Significant research results have been reported, and
materialized views are increasingly used in query evaluation in commer-
cial data-management systems. At the same time, most results in the lit-
erature assume set-theoretic semantics, whereas SQL queries have bag-
theoretic semantics (duplicates are not eliminated unless explicitly re-
quested). This paper presents results on selecting views to answer queries
in relational databases under set, bag, and bag-set semantics. The results
can be used under each of the three assumptions, to find sound and com-
plete algorithms for designing views and rewriting queries efficiently.
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1 Introduction

A lot of work has been done recently on optimizing queries in the presence of
materialized views. In this context, problems such as definition of views, compo-
sition of views, maintenance of views have been researched. At the same time,
the majority of the research assumes set-theoretic semantics, while SQL queries
have bag-theoretic semantics, where duplicates are not eliminated unless explic-
itly requested. As SQL is the query language used in most commercial database-
management systems (DBMS), results on rewriting queries under bag or bag-set
semantics are useful in practice.
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The problem of view selection has received significant attention in the liter-
ature [3, 4, 12–15, 17, 20, 21]. In this paper we consider view selection under set,
bag, and bag-set semantics. The problem is as follows: Given a set of queries
(which we call a query workload), a database, and a set of constraints on mate-
rialized views (e.g., storage limit, which is a bound on the amount of disk space
available for storing the materialized views), return definitions of views that,
when materialized in the database, would satisfy the constraints and reduce the
evaluation costs of the queries. The original motivation for the view-selection
problem comes from data-warehouse design, where we need to decide which
views to store in the warehouse to obtain optimal performance [4, 15, 20]. An-
other motivation is provided by recent versions of several commercial DBMS,
which support incremental updates of materialized views and use materialized
views to speed up query evaluation. Choosing an appropriate set of views to ma-
terialize in the database is crucial in order to obtain performance benefits from
these new features [3]. The view-selection problem and its generalizations will
play an even greater role in contexts where data needs to be placed intelligently
over a wide-area network, such as in peer-based data management [11].

Database relations are often duplicate-free. More precisely, database relations
are often sets, while views and queries are often bags, defined without using the
DISTINCT keyword (bag-set semantics). The bag-set semantics case is arguably
more practical than the bag-semantics case, as relational database-management
systems typically compute query answers using operators with bag-valued out-
puts on set-valued databases. At the same time, studying the bag-semantics case
is important not just from the theoretical but also from practical perspective,
as in view selection it is possible to design and materialize bag-valued views and
thus to obtain bag-valued databases of stored data. Computing query answers on
such databases using the rules of evaluating SQL queries on relational databases
obeys the laws of bag, rather than bag-set, semantics.

We now give examples that illustrate the high complexity of the problem of
selecting views to materialize when set semantics are assumed. In this paper we
show that under bag or bag-set semantics the complexity of the view-selection
problem is significantly lower, and thus it is more likely to find efficient view-
selection algorithms that output “more optimal” views than in the set-semantics
case. In the following, we make a distinction between views that contribute to the
construction of tuples in the query answers — we call them containment-target
views — and optional filtering views [2, 19] that may improve the efficiency of
query processing; see Example 2 for more details.

Our first example shows that the search space of potentially useful views can
be very large even for simple and common select-project-join queries.

Example 1. We exhibit a workload of select-project-join queries and a storage
limit, such that it is not possible to materialize the answers to all the workload
queries. We consider for materialization select-project-join views, such that each
view alone satisfies the storage limit and can support all workload queries. This
example shows that for the given workload and under set semantics, at least an
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exponential (in the size of the query workload) number of such views have more
subgoals than any query in the input workload.4

Consider a large retail chain with multiple stores and warehouses, where
products are ordered and shipped daily from the warehouses to replenish the
inventory in the stores. Suppose that the database has a Shipments relation,
and let warehouseID, warehouseCity, storeID, storeCity, orderNumber,
shipmentNumber, and shipmentDate be some of its attributes. Suppose the em-
ployees of the retail chain contract shipments to independent truck drivers, by
attracting them with tours connecting two or more cities. The company pre-
defines a number of tour types to offer to the truck drivers, and the company
employees need to query the database and find out whether the tour requested
by the driver exists starting at a given city. Every tour type starts and ends in
the same city. The simplest tour is the “two-city roundtrip”: The query returns
all cities warehouseCity such that there exist two scheduled deliveries: one from
warehouseCity to some storeCity on a given shipmentDate ‘date1’, and the
other from (a warehouse in) storeCity back to (some store in) warehouseCity
on a later shipmentDate ‘date2’. We now give a SQL definition of the query;
note the DISTINCT keyword that enforces set semantics.

SELECT DISTINCT S1.warehouseCity FROM Shipments S1, Shipments S2

WHERE S1.storeCity = S2.warehouseCity AND S1.warehouseCity = S2.storeCity

AND S1.shipmentDate = ‘date1’ AND S2.shipmentDate = ‘date2’;

As we show formally in the extended version of this paper, under set seman-
tics, for a given storage limit and for a query workload that has several such tour
queries for tours of different lengths, we can select and materialize a single view
such that the number of copies of the Shipments relation in the FROM clause of
the view is exponential in the combined size of the query workload. Thus, in view
selection under set semantics we potentially need to consider up to an exponen-
tial number of views in the size of the input query workload. At the same time,
as shown in this paper (see Theorems 4 and 7), in view selection under bag or
bag-set semantics we do not need to consider views whose definitions have more
subgoals than the number of subgoals of the longest input query.

Our second example shows that even if we further simplify the language
of queries of interest, there still remains a large number of views that could
significantly reduce the evaluation costs of the queries under set semantics.

Example 2. We use here the application domain of Example 1. Suppose that in
addition to the Shipments relation described in Example 1, the database also
has an Inventory relation, where the attributes of interest to us are storeID,
productID, orderNumber, and isOutstanding. We assume that the volume
of daily orders to replenish store inventories is large, and that a single order
is typically made for a large range of product types and potentially for several
stores in the same area. Further, suppose that different product types are stored
4 This example is a variation on Example 1 in [8]; unlike that example, here we restrict

the search space of views in that we do not consider filtering views.
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at different warehouses, and thus all the products ordered in a single order can be
delivered to a store via multiple shipments. Finally, we assume that on delivery,
the contents of most — but not all — shipments are put on the store shelves
and reflected in the inventory records on the same day.

Suppose that at the end of each day, the management of the retailer chain
routinely runs certain “daily report” queries on the deliveries. One of the queries
asks for the stores and product IDs such that some quantity of the product has
been ordered and was to be delivered to the store on the day in question, but the
order is still listed as “outstanding” in the store inventory. The query in SQL is:

SELECT DISTINCT I.storeID, productID FROM Shipments S, Inventory I

WHERE S.storeID = I.storeID and S.orderNumber = I.orderNumber

AND shipmentDate = ‘today’ AND isOutstanding = ‘yes’;

Note that unlike the queries in Example 1, the FROM clause of this query
has just one copy of each relation. That is, the daily-report query has no self-
joins. We show in this paper (see Sections 3.1, 4.1, and 5.1) that even under
set semantics (as well as under bag and bag-set semantics), when doing view
selection for such queries we do not need to consider views whose definitions
have more subgoals than the input queries. At the same time, we still need to
consider a significant number of views. Under the domain assumptions in this
example, even using reasonable indexes on Shipments or Inventory does not
eliminate most redundant tuples in the result of the join, and thus postprocessing
of a large temporary join result (which by definition never even has an index)
is part of any query plan that does not use materialized views. (The reason
is, under our domain assumptions a shipment where shipmentDate = ‘today’
typically corresponds to a large number of product IDs in the Inventory relation,
where the value of isOutstanding is ‘no’ for most records. Conversely, for
a large number of combinations of values of storeID and productID in the
Inventory relation where isOutstanding = ‘yes’, the value of shipmentDate
of the corresponding order is not ‘today’.)

Consider materializing a view V that is a natural join of those tuples in
Shipments and Inventory where shipmentDate = ‘today’ and isOutstanding
= ‘yes’. Suppose that in the answer to V we have (at least) attributes storeID
and orderNumber. Then we can use this view as a filter — essentially like an
index or a semijoin — to narrow down the number of tuples in the large result of
joining the relations Shipments and Inventory. The query plans that use V all
join V with either Shipments or Inventory first (an index can be maintained on
V to make the join efficient), and then join the resulting smaller-size temporary
relation with the remaining relation in the FROM clause of the query.5

We have seen that under set semantics, having a materialized view such as
V could improve the processing efficiency of the daily-report query, which is
important when the query is asked often and regularly on large relations.6 At
5 In presence of frequent updates on the stored data, the update problem for the view
V is not much more complex than the problem of updating indexes on Shipments or
Inventory, because we have just two relations in the FROM clause of the view.

6 For instance, WalMart maintains a database with billions of rows in stored relations.
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the same time, the choice of output attributes in a filtering view of this type
depends on a number of criteria, including the types of other queries in the query
mix. Thus, potentially we would have to consider all subsets of the combination
of all attributes of the stored relations Shipments and Inventory.

We show in this paper that unlike the case of set semantics, filtering views
do not need to be considered in view selection under bag or bag-set semantics.
Thus, in view selection we can further restrict the search space of views that are
useful in rewriting the given workload queries.

In this paper we present results on designing views to answer queries and on
rewriting queries in relational databases under set, bag and bag-set semantics,
which are useful in practice. The contributions are the following: (1) We give a
bound for the number of subgoals in the optimal viewsets, and (2) we study the
computational complexity of the view-selection problem. The results can be used
in finding sound and complete algorithms for designing views and for rewriting
queries under each of the three semantics.

To the best of our knowledge, limited related work has been done. [7] studies
the containment problem of conjunctive queries under bag semantics which is
proved to be

∏p
2-hard, whereas equivalence under bag semantics has the same

complexity as the graph-isomorphism problem, which is in NP. [10] presents
techniques for bag semantics, bag-specific constraints (UWDs), and for handling
bag queries over arbitrary mixes of bag and set schema elements and views. The
problem of optimizing queries with materialized views under bag semantics is
studied in [6] and under set semantics in [18]. Finally, [16] studies conjunctive
queries over generalized databases, to obtain an understanding of the behavior
of relations as multisets (cf. SQL query-evaluation semantics).

2 Preliminaries

2.1 Basic definitions

A relational database is a collection of stored relations. Each relation R is a
collection of tuples, where each tuple is a list of values of the attributes in the
relation schema of R. A relation can be viewed either as a set or as a bag (another
term is multiset) of tuples. A bag can be thought of as a set of elements (we call
it the core-set of the bag) with multiplicities attached to each element. In a set-
valued database, all stored relations are sets; in a bag-valued database, multiset
stored relations are allowed.

In this paper we focus on select-project-join SQL queries with equality com-
parisons, a.k.a. safe conjunctive queries. A conjunctive query is a rule of the
form: Q : ans(X̄) ← e1(X̄1), . . . , en(X̄n), where e1, . . . en are database rela-
tions and X̄, X̄1, . . . , X̄n are vectors of variables. The variables in X̄ are called
head or distinguished variables of Q, whereas the variables in X̄i are called body
variables of Q. A query has self-joins if the minimized query definition [5] has at
least two subgoals with the same relation name. A view refers to a named query.
A view is said to be materialized if its answer is stored in the database.
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We say that a bag B is a subbag [7] of a bag B′ (we write B ⊆b B′) if each
element of B is contained in B′ with a greater than or equal multiplicity. The
bag union (t) [7] of two bags is obtained by adding the multiplicity factors for
each tuple in each bag.

2.2 Query containment and equivalence

A query Q1 is set-contained in a query Q2, denoted by Q1 vs Q2, if for any
set-valued database D the answer to Q1 on D under set semantics is a subset of
the answer to Q2 on D under set semantics. A query Q1 is bag-contained (bag-set
contained) in Q2, denoted by Q1 vb Q2 (Q1 vbs Q2, respectively), if for any bag-
valued (set-valued, respectively) database D, the answer to Q1 on D under bag
semantics (bag-set semantics, respectively) is a subbag of the answer to Q2 on
D under the same semantics. Two queries are equivalent under set/bag/bag-set
semantics (Q1 ≡s Q2, Q1 ≡b Q2, Q1 ≡bs Q2, respectively) if they are contained
in each other under that semantics.

2.3 Equivalent rewritings and the view-selection problem

Let V be a set of views defined on a database schema S, and D be a database
with the schema S. Then by DV we denote the database obtained by computing
all the view relations in V on D. Let Q be a query defined on S, and V be a set
of views defined on S. A query R is a rewriting of the query Q using the views in
V if all subgoals of R are view predicates defined in V or interpreted predicates.

The expansion Rexp of a rewriting R of a query Q using views is obtained
from R by replacing all the view atoms in the body of R by their definitions in
terms of the base relations. A rewriting R of a query Q on a set of views V is
a contained rewriting of Q using V under set semantics if for every database D,
R(DV) ⊆ Q(D). A rewriting R of a query Q on a set of views V is an equivalent
rewriting under set semantics if for every database D, R(DV) = Q(D).

The definition of the notion contained rewriting for bag or bag-set semantics is
analogous. The only difference is that we now require that R(DV) is a subbag of
Q(D). The definition of the notion of equivalent rewriting for the bag and bag-set
semantics is the same as above (in this case, however, the symbol ‘=’ stands for
bag equality). A conjunctive equivalent rewriting Q′ of a conjunctive query Q
(under some semantics) is locally minimal [18] if we cannot remove any literals
from Q′ and still retain equivalence to Q (under the same semantics).

Given a set, or workload, Q of queries on stored relations and a database
instance, we want to find and precompute offline a set of intermediate results,
defined as views (we call this set of views a viewset) on these relations. The views
can be used to compute the answers to all queries in the workload Q. Our goal
is to design minimal-cost views, that is, views whose use in the rewriting of the
queries in Q minimizes the evaluation cost of these queries. As we assume that
the view relations have been precomputed and stored in the database, we do not
assume any cost of computing the views. For query-evaluation costs, we use the
following sum-cost model [8]. The cost of a join of two relations is proportional
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to the sum of the sizes of the input and output relations.7 The cost of a query
plan is proportional to the sum of costs of all the joins in the plan. (We assume
the use of left-linear query plans, where selections are pushed as far as they
go and projection is the last operation.) The cost of evaluating a query is the
minimum cost of its query plans. The total cost of evaluating a query workload
is proportional to the sum of the costs of its queries; the sum can be weighted
to reflect the relative frequency or importance of the queries.

In this paper we consider problem inputs that are 4-tuples (S,Q,D,L), where
S is a database schema, Q is a workload of queries defined on S, D is a database
with schema S, and L is a collection of constraints on sets of materialized views.
A problem input P is said to be set-oriented (bag-oriented, bag-set-oriented,
respectively) if we consider set-semantics (bag-semantics, bag-set semantics, re-
spectively) for computing query answers; P is said to be conjunctive if we con-
sider the conjunctive language for queries, views and rewritings.

Some results in this paper are given for a special type of constraints L on
materialized views: In those results, L is a singleton L = {C}, C ∈ N. The
storage limit C means that the total size size(V(D)) of the relations for the views
in V on D must not exceed C. If the storage limit is sufficiently large then we
can materialize all query answers and this is the optimal viewset. The problem
becomes interesting when the storage limit is less than that.8

Definition 1. For a given query Q, semantics (set, bag, or bag-set) for evaluat-
ing the query on the database, a viewset V, and database D: (1) R is a candidate
rewriting of Q in terms of V if R is an equivalent rewriting of Q under the given
semantics, and (2) R is an optimal rewriting of Q in terms of V on D if R is
a candidate rewriting that minimizes the cost of computing the answer to Q on
DV among all candidate rewritings of Q in terms of V.

Definition 2. Let P = (S,Q,D,L) be a problem input. A set of views V is said
to be an admissible viewset for P if: (1) V gives equivalent (candidate) rewritings
of all the queries in Q, (2) for every view V ∈ V, there exists an equivalent
rewriting of a query in Q that uses V , and (3) V satisfies the constraints L.

Definition 3. For a problem input P = (S,Q,D,L), an optimal viewset is a
set of views V defined on S, such that: (1) V is an admissible viewset for P, and
(2) V minimizes the total cost of evaluating the queries in Q on the database
DV , among all admissible viewsets for P.

Definition 4. For any problem input P, a viewset V is said to be nonredundant
for P if V is admissible for P and there is no proper subset V ′ of V such that V ′
is also admissible for P.

In some results of this paper, instead of a database D in the definition of
a problem input, we will use the notion of an oracle O. An oracle is supposed
to give, instantaneously, exact relation sizes for all views defined on the schema
7 This models faithfully hash joins and index joins.
8 If the storage limit is too small then there is no viewset that can rewrite all queries.
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S. In this case a problem input is written as (S,Q,O,L). The notion of an
optimal viewset is defined analogously to the case of problem inputs of the form
(S,Q,D,L), where D is a database. The results in the remainder of this paper
are given for problem inputs that include a fixed database, but can be extended
in a straightforward manner to problem inputs that include an oracle.

2.4 Different types of views

There are two types of conjunctive views that can be used in a conjunctive
rewriting of a conjunctive query [9]: (1) containment-target views, and (2) filter-
ing views. A conjunctive view V is a containment-target view for a conjunctive
query Q if there exists a conjunctive rewriting P of Q (P uses V ), and there is a
containment mapping (for the set-semantics case, or bijective mappings for the
bag and bag-set semantics case) from Q to the expansion P exp of P , such that V
provides the image of at least one subgoal of Q under the mapping. Intuitively,
in a rewriting, a containment-target view “covers” at least one query subgoal.
Covering all query subgoals is enough to produce a rewriting of the query. A
view is a filtering view for a query if it is not a containment-target view.

3 Queries without Self-Joins under Set Semantics

In this section we consider the view-selection problem under set semantics. We
present the following results:

1. In Section 3.1 we show that for workloads of queries without self-joins there
exist optimal viewsets whose view definitions do not have self-joins. More-
over, the view definitions in such viewsets have no more subgoals than any
query in the workload.

2. In Section 3.2 we show that for workloads of queries without self-joins there
exist optimal viewsets, such that rewriting any workload query does not
require self-joins of containment-target views in the viewset.

3. In Section 3.3 we show that the decision version of the view-selection problem
is in NP for workloads of queries without self-joins, provided that filtering
views are not used in query rewritings.

These results are very useful in designing an algorithm that constructs opti-
mal viewsets, as they provide a bound on the number of atoms in each view in an
optimal viewset and ensure that these views do not contain self-joins, provided
the workload queries do not contain self-joins.

3.1 View definitions without self-joins

The following theorem holds for queries without self-joins under set semantics.

Theorem 1. Given a conjunctive set-oriented problem input P = (S,Q,D,L),
where L represents a single storage limit and all queries in Q are conjunctive
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queries without self-joins, if there exists an optimal viewset V for P under the
storage limit constraint L, then there exists an optimal viewset V ′ under L such
that each view in V ′ can be defined as a conjunctive query without self-joins.

The statement of Theorem 1 is that whenever workload queries have no
self-joins then there exist optimal viewsets whose view definitions do not have
self-joins. The following Corollary 1 goes one step further, by showing that each
view in the optimal viewset has no more subgoals than the workload queries.

Corollary 1. Given a conjunctive set-oriented problem input P = (S,Q,D,L)
where L represents a single storage-limit constraint and assuming that (1) all
queries in Q are without self-joins, and (2) the number of (relational) subgoals
in any query does not exceed an integer n, then if there exists an optimal viewset
for P under L, then there exists an optimal viewset V of P under L, such that
for every view V in V, the number of subgoals of V is bounded from above by n.

The optimal viewset stipulated in Corollary 1 may include filtering views
alongside containment-target views. Moreover, even an exponential number of
filtering views may be necessary under set semantics; see [8]. Note that we cannot
strengthen the Corollary 1 to state that under the premises of the corollary there
exists an optimal viewset V, such that each view in V is a subexpression of some
query in the input query workload. As a counterexample, consider Example 3.

Example 3. Consider a query workload Q = { Q1, Q2 }, where:

Q1(X,Y,Z) :- p(X,X), s(X,Y), t(Y,Z).
Q2(X,Y,Z) :- p(X,Y), s(Y,Y), t(Y,Z).

Suppose that we are given a database D= { p(a,a), p(a,b), p(c,c), s(a,a),
s(b,b), s(c,b), t(a,d), t(a,f), t(b,g), t(b,h)} and a set of constraints
L = { L }, where the value of the storage limit L = 6 is an upper bound on
the sizes of materialized views on D. Consider a view V :

V: v(Z,T,W,U) :- p(Z,T),s(T,W),t(W,U).

Note that the view V is not a subexpression of either query in the workloadQ.
However, V = { V } is an optimal viewset for the problem input ({ P (A,B),
S(C,D), T (E, F ) }, { Q1, Q2 }, D, { L }), and both input queries can be
rewritten using the view V :

Q1’(X,Y,Z):- v(X,X,Y,Z).
Q2’(X,Y,Z):- v(X,Y,Y,Z).

Finally, when queries have self-joins, the number of subgoals of views can be
up to a product of the number of subgoals of the queries; see Example 1 in [8].
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3.2 Rewritings without self-joins

While the results in Section 3.1 refer to the stucture of the views in an optimal
viewset, in this section we are interested in the structure of the query rewritings
provided that the queries in the workload Q do not have self-joins. We show that
there exists an optimal viewset V, such that rewriting any query in Q does not
require self-joins of containment-target views in V.

Theorem 2. Given a conjunctive set-oriented problem input P = (S,Q,D,L)
and assuming that the queries in Q do not have self-joins, if there exists an
optimal viewset V for P under the storage limit L, then it is possible to rewrite
each query in Q using V, without self-joins of containment-target views.

The lack of self-joins in queries is an essential condition in Theorem 2, as we
can show that otherwise nontrivial self-joins of containment-target views may
be required. An analogous result holds for filtering views (cf. Example 1 in [8]).

3.3 Complexity

We now consider the decision version of the view-selection problem, that is,
given a set-oriented problem input P and a positive integer K, the problem is
to determine whether there exists an admissible viewset V for P, such that the
cost of evaluating the queries Q in P using V does not exceed K. We show
that this problem is in NP for workloads of queries without self-joins, provided
that filtering views are not used in query rewritings. We prove the result for
the oracle version of problem inputs, that is, we show that the size of a witness
is polynomial in the size of the following components of the problem input:
database schema, query workload, and constraints on the materialized views.
This result is stronger than proving that the size of a witness is polynomial in
the size of the above components plus the size of an input database, because
database schemas, query workloads, and constraints on the materialized views
are typically small in size compared to the size of possible databases conforming
to the schemas. To prove the main result, we first establish an upper bound on
the number of containment-target views in query rewritings.

Lemma 1. [18] Let Q be a conjunctive query and V be a set of views, both Q
and V without built-in predicates. If the body of Q has p relational subgoals and
Q′ is a locally minimal equivalent conjunctive rewriting of Q using V, then Q′

has at most p relational subgoals.

Proposition 1. For any conjunctive query Q with p relational subgoals and for
any locally minimal conjunctive rewriting Q′ of Q in terms of views such that
Q′ ≡s Q, the number of containment-target views in Q′ does not exceed p.

This result follows from the observation that any locally minimal rewriting
does not contain filtering views. From Proposition 1 we obtain Theorem 3:
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Theorem 3. Given an oracle version of a conjunctive set-oriented problem in-
put P whose queries are without self-joins, the decision version of the view-
selection problem is in NP, provided that rewritings do not include filtering views.

Note that if filtering views are allowed in query rewritings, then the view-
selection problem under set semantics has an exponential-time lower bound even
when none of the workload queries have self-joins; see [8].

4 Queries under Bag Semantics

In this section we consider the view-selection problem under bag semantics.
Before proceeding to the main results of this section, we note that under bag
semantics any candidate query rewriting lacks any filtering views, as well as any
redundant containment-target views [7]. We now summarize the main results:

1. In Section 4.1 we show that for workloads of queries with or without self-
joins, each view definition in any admissible viewset (and thus in any optimal
viewset) has no more subgoals than any query in the input workload. As a
consequence, for workloads of queries without self-joins each view definition
in an admissible viewset can be defined without self-joins.

2. In Section 4.2 we show that for workloads of queries without self-joins and
for any admissible viewset, rewriting any query in the workload does not
require self-joins of view atoms.

3. In Section 4.3 we show that the decision version of the view-selection problem
is in NP for workloads of queries with or without self-joins and for a single
storage-limit constraint on materialized views (see also [1]).

Comparing these results with those in Section 3, we conclude that both con-
structing admissible/optimal viewsets and rewriting queries using views are eas-
ier problems under bag semantics than under set semantics.

4.1 Bounded number of subgoals

The following lemma holds for workloads of queries without or with self-joins
under bag semantics and for arbitrary sets of constraints on materialized views.

Lemma 2. Let P = (S,Q,D,L) be a conjunctive bag-oriented problem input,
where L is a set of any constraints. Let V be any admissible viewset for P, and
let Q be any query in Q. Suppose V ′ ⊆ V is the set of all views in the equivalent
rewriting R of Q in terms of V. Then the definitions of views V ′ in the expansion
of R form a partition of the definition of Q.

The remaining results in Section 4.1 follow trivially from Lemma 2.

Proposition 2. Given a conjunctive bag-oriented problem input P, let V be any
admissible viewset for P. Then each view in V has at most n subgoals, where n
is the number of subgoals in the longest query in the input workload Q.

11



The following theorem sets an upper bound on the number of subgoals in the
body of any view definition in any admissible viewset.

Theorem 4. Let P be a conjunctive bag-oriented problem input and n be the
number of subgoals in the longest query in Q. Then, for any admissible viewset
V for P, each view in V can be defined using at most n subgoals.

We can make a more precise statement about the number of subgoals in view
definitions for views in admissible viewsets: Let P be a conjunctive bag-oriented
problem input and let V be any view in any admissible viewset V for P. Suppose
V is used in rewriting queries Qi1 , . . . , Qik

in Q; let m be the number of subgoals
in the shortest definition among Qi1 , . . . , Qik

. Then V can be defined using at
most m subgoals. In addition, we observe the following. For any conjunctive
bag-oriented problem input P and for an admissible viewset V for P: If queries
in Q do not have self-joins, then every view in V can be defined as a conjunctive
query without self-joins.

4.2 Rewritings without self-joins of views

Analogously to the case of set semantics, in the case of bag semantics we can
show that for problem inputs P whose query workloads Q do not have self-joins,
and for any admissible viewset V for P, rewriting any query in Q does not require
self-joins of views in V. The following theorem follows directly from Lemma 2.

Theorem 5. Let P be a conjunctive bag-oriented problem input and V an ad-
missible viewset for P. Assuming that queries in Q do not have self-joins, then
it is possible to rewrite each query in Q without using self-joins of views in V.

4.3 Complexity

In this section we show that the decision version of the view-selection problem
is in NP for a single storage-limit constraint on materialized views (see also [1]).
We define the decision version of the problem and state the result for the oracle
version of problem inputs, analogously to the respective formulations in Sec-
tion 3.3. At the same time, unlike the results in Section 3.3, the NP results for
bag semantics hold for workloads of queries without or with self-joins.

We first establish an analog of Proposition 1 in Section 3.3:

Proposition 3. For any conjunctive query Q with p relational subgoals and for
any conjunctive rewriting Q′ of Q in terms of views, such that Q′ ≡b Q, the
number of views in Q′ does not exceed p.

This result follows immediately from the fact that for any equivalent (under
bag semantics) rewriting to a query, the rewriting does not contain filtering views
or “unnecessary” containment-target views, and is thus locally minimal.

We now establish Theorem 6, which is a direct consequence of the following
observation: Under bag semantics, for any problem input P = (S,Q,D,L) with
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any set of constraints L, and for any admissible viewset V for P, the number of
views in V does not exceed p, where p is the total number of relational subgoals
in all the queries in the query workload Q in P.

Theorem 6. Given an oracle version of a conjunctive, bag-oriented problem
input P and assuming that the input set of constraints L represents a single
storage limit, the decision version of the view-selection problem is in NP.

5 Queries under Bag-Set Semantics

In this section we consider the view-selection problem under bag-set semantics.
Note that all queries mentioned in the results below may have self-joins. In the
extended version of the paper we show that filtering views are not needed under
bag-set semantics. The main results of this section are:

1. The results in Section 5.1 are similar to those in Section 4.1, which con-
cerns bag semantics. That is, we show that for workloads of queries with or
without self-joins, each view definition in any admissible viewset (and thus
in any optimal viewset) has no more subgoals than any query in the input
workload. As a consequence, for workloads of queries without self-joins, each
view definition in an admissible viewset can be defined without self-joins.
Moreover, we can show that for workloads of queries without self-joins and
for any admissible viewsets, rewriting any query in the workload does not
require self-joins of view atoms.

2. In Section 5.2 we show that the decision version of the view-selection problem
is in NP for workloads of queries with or without self-joins and for a single
storage-limit constraint on materialized views.

5.1 Bounded number of subgoals

Our first result holds for workloads of queries without or with self-joins under
bag-set semantics and for arbitrary sets of constraints on materialized views.

Lemma 3. Let P be a conjunctive, bag-set-oriented problem input, and let V
be any admissible viewset for P. Then each view in V has at most n subgoals,
where n is the number of subgoals in the longest query in the input workload Q.

All remaining results in this subsection follow directly from Lemma 3.

Theorem 7. Let P be a conjunctive bag-set-oriented problem input, and n be the
number of subgoals in the longest query in Q. Then, for all admissible viewsets
V for P, each view in each V can be defined using at most n subgoals.

We can make a more precise statement about the number of subgoals in view
definitions for views in admissible viewsets:
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Corollary 2. Let P be a conjunctive bag-set-oriented problem input, and let V
be any view in any admissible viewset V for P. Suppose V is used in rewriting
queries Qi1 , . . . , Qik

in Q; let m be the number of subgoals in the shortest defini-
tion among the definitions of Qi1 , . . . , Qik

. Then V can be defined using at most
m subgoals.

We also make the following observation: Let P be a conjunctive bag-set-
oriented problem input, and V an admissible viewset for P. If queries in Q do
not have self-joins, then each view in V can be defined as a conjunctive query
without self-joins. In addition, we can show that for problem inputs P whose
query workloads Q do not have self-joins and for any admissible viewset V for
P, rewriting any query in Q does not require self-joins of views in V.

5.2 Complexity

We now show that the decision version of the view-selection problem is in NP for
a single storage-limit constraint on materialized views. We formulate the decision
version of the problem and state the result for the oracle version of problem
inputs, similarly to the previous sections. The NP results hold for workloads of
queries without or with self-joins.

Proposition 4. For any conjunctive query Q with p relational subgoals and for
any conjunctive locally minimal rewriting Q′ of Q in terms of views, such that
Q′ ≡bs Q, the number of views in Q′ does not exceed p.

This result follows from the definition of a locally minimal rewriting that is
equivalent to a query under bag-set semantics. By definition, the rewriting does
not contain filtering views or “unnecessary” containment-target views.

We now establish that the decision version of the view-selection problem is
in NP. This result is a consequence of the following observation: Under bag-set
semantics, for any problem input P = (S,Q,D,L) with any set of constraints L,
and for any nonredundant viewset V for P, the number of views in V does not
exceed p, where p is the total number of relational subgoals in all the queries in
the query workload Q in P.

Theorem 8. Given an oracle version of a conjunctive bag-set-oriented problem
input P and assuming that the input set of constraints L represents a single
storage limit, the decision version of the view-selection problem is in NP.

6 Conclusions and Future Work

This paper presents results on designing views to answer queries in relational
databases under set, bag and bag-set semantics. The results can be used in
finding sound and complete algorithms for designing views and rewriting queries
under each of the three assumptions. We are currently working on designing
such algorithms. In our future work we also plan to study the complexity of
the optimization problem and to extend this method to include, in a systematic
way, queries with arithmetic comparisons. Applying these results to XQuery is
another direction of our future research.
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