
Using Branching�Time Logic to Optimize an

Extended Class of Datalog Queries�

Petros Potikas���� Manolis Gergatsoulis�� and Panos Rondogiannis�

� Department of Electrical and Computer Engineering�
National Technical University of Athens� ��� �� Zografou� Athens� Greece

ppotik�cs�ntua�gr
� Department of Archive and Library Sciences�

Ionian University� Palea Anaktora� Plateia Eleftherias� ����� Corfu� Greece
manolis�ionio�gr

� Department of Informatics � Telecommunications�
University of Athens� Panepistimiopolis� ��� 	� Athens� Greece

prondo�di�uoa�gr

Abstract� We propose an extension of the branching�time transforma�
tion 
��� which can handle a signi�cantly broader class of Datalog pro

grams� The initial transformation could only be applied to Chain Data

log� a useful but restricted class of programs� In this paper we demon

strate that the transformation of 
��� can be extended to handle all
Datalog programs that do not allow multiple consumptions of variables
in clauses� We demonstrate the correctness of the new transformation
and provide certain optimizations that further improve the programs
obtained by the transformation�

Keywords� Deductive Databases� Temporal Logic Programming�

� Intoduction

The work presented in this paper contributes to the area of value�passing Datalog
optimizations �in which the input values of the top level goal of the source pro�
gram are propagated in order to restrict the generation of atoms in the bottom�
up computation�� Such techniques have a long�standing tradition in the area
of deductive databases �as examples we should cite the counting transforma�
tion ����� the magic sets ��� �	�� the pushdown approach ���� and so on�� Recently�
a technique that contributes to this stream of research has been proposed
 the
branching�time transformation ���� uses ideas from temporal logic programming
in order to optimize Chain Datalog programs� The branching�time transforma�
tion has its roots in the area of functional programming where a similar idea
has been developed and used as an implementation technique for functional lan�
guages �����
� ��� ����

The technique of ���� applies to Chain Datalog programs� a subset of Datalog
which has found many uses in deductive databases� The syntax of Chain Datalog

� This work has been partially supported by the University of Athens under the project
�Extensions of the Logic Programming Paradigm� �grant no� ������	����



programs is somewhat restrictive in the sense that the value of a variable that
is produced in an atom must be consumed immediately in the next atom in
the clause� moreover� each atom has exactly two variables �one input and one
output�� In this paper we raise these restrictions� More speci�cally� we allow
clauses in which variables that are produced in an atom must be consumed
in any subsequent atom in the clause� moreover� each atom may have many
variables �and not just two�� This new class is obviously a superset of Chain
Datalog and it allows more freedom in the creation of more demanding queries�

The contributions of the paper can be summarized as follows


� We demonstrate how the branching�time transformation can be extended to
apply to the class of productive�consumptive Datalog programs� This is a
much broader class than that of Chain Datalog programs and can certainly
allow more interesting queries to be expressed�

� The new transformation is equally simple as the one of ����� It uses the
same target language and the programs obtained have the same desirable
properties as the ones produced by ����� It should be noted that if one al�
lows multiple consumptive occurrences of variables� then the target language
should be enriched with additional constructs �as we demonstrate in �
���

� The Source Language of the Transformation

In the following� we assume a familiarity with the basic concepts behind deduc�
tive databases ��� and logic programming �	��

A Datalog program P is a �nite set of function�free Horn rules� Predicates
appearing in the head of some rule in P are called IDB predicates� while those
appearing only in the rule bodies are called EDB predicates� A set D of ground
unit clauses de�ning the EDBs is called a database� If P is a Datalog program and
D a database then by PD we denote the program P along with the database D�
The least Herbrand model of PD is denoted by M �PD� while M �p� PD� denotes
the subset of M �PD� containing all atoms whose predicate is p� We also use the
following notation
 constants are denoted by a� b� c� variables by uppercase letters
such as X�Y� Z and vectors of variables by v� predicates by lower case letters
such as p� q� r� also subscripted versions of the above symbols will be used� The
source language of the transformation is de�ned bellow


De�nition �� A clause
p��v�� Zn�� p��v�� Z��� p��v�� Z��� � � � � pn�vn� Zn��

with n � �� is called productive�consumptive clause �or pc�clause for short� if�

�� Each vi� for i � �� � � � � n is a nonempty vector containing distinct variables�
moreover Z�� � � � � Zn are distinct variables�

�� vars�vi� � vars�v�� � fZ�� � � � � Zi��g� for � � i � n�
	� for every V � vars�v�� there exists exactly one vector vi� � � i � n such

that V � vars�vi��

� for every Zi with � � i � n � �� there exists exactly one vector vj with

i � j � n such that Zi � vars�vj��

�



A program P is said to be a pc�Datalog program if all its clauses are pc�
clauses� A goal G is of the form � q�e� Z�� where e is a nonempty vector of
constants� Z is a variable and q is an IDB predicate�

It should be mentioned here that pc�clauses are moded� More speci�cally� we
assume that each predicate has only one mode� i�e� each argument position is
used either as input or as output� but not both� In particular the terms vi of
the above de�nition correspond to input arguments� while each Zi corresponds
to the single output argument of each atom�

Example �� The following clause is a pc�clause


p�
�
X�

�
Y�

�
Z�� q�

�
Y�

�
W�� r�

�
X�

�
R�� s�

�
W�

�
R�

�
Z��

where the � and � signs above the variables denote the input and output argu�
ments respectively�

De�nition �� An occurrence of a variable in an input argument of the head
or in the output argument of an atom in the body of a clause will be called
productive� otherwise it will be called consumptive�

The intuition behind the class of pc�Datalog programs is that each value
produced by an atom must be consumed in exactly one atom following �not
necessarily immediately� the atom that produced it �except for the production
of the last atomwhich is returned to the head atom�� Thus� each variable appears
exactly twice in a pc�clause� Many natural Datalog programs belong to this class�
for example� the class of Chain Datalog programs is a proper subset of this class�

De�nition �� A simple pc�Datalog program is a pc�Datalog program in which
every clause has at most two atoms in its body�

The following proposition �which can be proved easily using unfold�fold
transformations ��� ��� establishes the equivalence between pc�Datalog programs
and simple pc�Datalog ones�

Proposition �� Every pc�Datalog program P can be transformed into a simple
pc�Datalog program P � such that for every predicate symbol p appearing in P and
for every database D� M �p� PD� � M �p� P �

D��

Example �� Consider the following pc�Datalog program P 


��� p�X� Y� Z�� e�X� W�� p�W� Y� R��f�R�Z��
��� p�X� Y� Z�� g�X� Y� Z��

The corresponding simple pc�Datalog program P � is


���� p�X� Y� Z�� e�X� W�� q�W� Y� Z��
�E� q�W� Y� Z�� p�W� Y� R�� f�R� Z��
��� p�X� Y� Z�� g�X� Y� Z��

P � has been obtained from P by introducing a new de�nition �clause E� and
then folding clause � using E to obtain ���

�



Since by Proposition �� for every pc�Datalog programwe can obtain an equiv�
alent simple pc�Datalog program� for practical reasons we de�ne the transfor�
mation algorithm on simple pc�Datalog programs�

� The Target Language of the Transformation

The target language of the transformation is Branching Datalog which is a tem�
poral logic programming language that supports a branching notion of time�
This formalism has its roots in the Chronolog ������ and Cactus ���� temporal
logic programming languages� In particular� Branching Datalog programs are
Cactus programs without function symbols� Every atom in a Branching Data�
log program is preceded by a temporal reference� which is a �possibly empty�
sequence of the temporal operators first and nexti� i � �� A temporal reference
of the form first nexti� � � �nextik � where k � �� is called canonical� A temporal
reference of the form nexti� � � �nextik is said to be open� A temporal atom is an
atom preceded by either a canonical or an open temporal reference� A canoni�
cal �resp� open� temporal atom is a temporal atom whose temporal reference is
canonical �resp� open�� A goal in Branching Datalog is of the form� A� where
A is either a canonical temporal atom or an open one� A temporal clause in
Branching Datalog is a formula of the form


H � A�� � � � � An�

where H�A�� � � � � An are temporal atoms and n � �� If n � �� the clause is said
to be a unit temporal clause� A Branching Datalog program is a �nite set of
temporal clauses� A canonical temporal clause is a temporal clause in which all
atoms that occur in it are canonical� A canonical temporal instance of a temporal
clause C is a canonical temporal clause which is obtained by applying the same
canonical temporal reference to all open atoms of C�

Branching Datalog is based on a relatively simple branching�time logic �BTL��
In BTL time has an initial moment and �ows towards the future in a tree�like
way� The set of moments in time can be modeled by the set List��� of lists of
natural numbers� The empty list � � corresponds to the beginning of time and
the list �ijt� �that is� the list with head i� where i � �� and tail t� corresponds to
the i�th alternative successor of the moment identi�ed by the list t� BTL uses
the temporal operators first and nexti� i � �� The operator first is used to
identify the �rst moment in time� while nexti refers to the i�th alternative suc�
cessor of the current moment in time� The syntax of BTL extends the syntax of
�rst�order logic with two formation rules
 if A is a formula then so are first A
and nexti A� The semantics of temporal formulas of BTL are given using the
notion of branching temporal interpretation ����


De�nition �� A branching temporal interpretation or simply a temporal in�
terpretation I of BTL comprises a non�empty set D� called the domain of the
interpretation� together with an element of D for each variable or constant sym�
bol and an element of �List��� � �D

n

� for each n�ary predicate symbol�

�



In the following de�nition� the satisfaction relation j� is de�ned in terms of
temporal interpretations� j�I�t A denotes that a formula A is true at a moment
t in some temporal interpretation I�

De�nition �� The semantics of the elements of the temporal logic BTL are
given recursively as follows�

�� For any n�ary predicate symbol p and terms e�� � � � � en���
j�I�t p�e�� � � � � en��� i� hI�e��� � � � � I�en���i � I�p��t�

�� j�I�t 	A i� it is not the case that j�I�t A
	� j�I�t A 
B i� j�I�t A and j�I�t B

� j�I�t ��x�A i� j�I�d�x��t A for all d � D� where the interpretation I�d�x� is

the same as I except that the variable x is assigned the element d�
�� j�I�t first A i� j�I�� � A

� j�I�t nexti A i� j�I��ijt� A

If a formula A is true in a temporal interpretation I at all moments in time�
it is said to be true in I �we write j�I A� and I is called a model of A�

��� Semantics of Branching Datalog

When we focus on Branching Datalog programs� the interpretations we consider
are Herbrand ones� As usual� the Herbrand universe UPD of a program P to�
gether with a database D is the set of all constant symbols that appear in PD�
Temporal Herbrand interpretations can be regarded as subsets of the temporal
Herbrand base BPD of PD� consisting of all canonical ground temporal atoms
whose predicate symbols appear in PD and whose arguments are terms in the
Herbrand universe UPD of PD� In particular� given a subset H of BPD � we can
de�ne a temporal Herbrand interpretation I by the following


hc�� � � � � cn��i � I�p���i�� � � � � ik�� i�
first nextik � � � nexti� p�c�� � � � � cn��� � H

A temporal Herbrand model is a temporal Herbrand interpretation which is a
model of the program� In the rest of the paper� when we refer to a �model of a
program� we always mean a temporal Herbrand model�

Many interesting results of classical logic programming can be easily extended
to hold for Branching Datalog� The following theorem states that the least Her�
brand model of PD consists of all canonical ground temporal atoms which are
logical consequences of PD�

Theorem �� Let P be a Branching Datalog program and D a database� Then
M �PD� � fA � BPD j PD j� Ag

Next� we de�ne a �xpoint operator for Branching Datalog�

De�nition �� Let P be a Branching Datalog program and D a database� The
operator TPD 
 �BPD � �BPD is de�ned as follows� if I is a temporal Herbrand
interpretation in �TPD then TPD �I� � fA j A� B�� ���� Bn is a canonical ground
instance of a program clause in PD and fB�� ���� Bng � I g�

	



It is easy to prove that TPD is continuous and monotonic� therefore it provides
a characterization of the least Herbrand model of Branching Datalog programs�

Theorem �� Let P be a Branching Datalog program and D a database� Then
M �PD� � lfp�TPD � � TPD � ��

� The Transformation Algorithm

In this section we de�ne formally the transformation algorithm�

The algorithm� Let P be a simple pc�Datalog program and G a goal clause� For
each �n � ���ary predicate p in P � we introduce n � � unary IDB predicates
p�� � � � � � p

�
n � p

�� where p�i corresponds to the i�th input argument of p and p�

to the �n � ���th argument of p �which is the output one�� The transformation
processes the goal clause G and each clause in P and gives as output a new goal
clause G� and a Branching Datalog program P �� When processing a clause in P �
the algorithm introduces branching�time operators of the form nexti� i � �� This
can be done� by assigning to each body atom in P a di�erent natural number�
Then� if i is the index assigned to an atom� nexti is the operator corresponding to
that atom�The operators introduced in this way for a given clause are guaranteed
to be di�erent than the operators introduced for any other clause in P �

The algorithm processes the program and goal clauses in the following way


Case �� Let C be a clause of the form


p�v�� Z� � q�v�� Y �� r�v�� Z��

and let nexti� nextj be the branching�time operators of q�v�� Y � and r�v�� Z��
respectively� Then C is transformed in the following way

a� The following clause is added to P �


p��Z�� nextj r
��Z��

b� Let X be a variable that appears in the k�th position of v� and also in
the m�th position of v�� Then� the following clause is added to P �


nexti q
�
m�X� � p�k �X��

Variables appearing in both v� and v�� are treated analogously�
c� If the output variable Y of q appears in the m�th position of v�� then

the following clause is added to P �


nextj r
�
m�Y �� nexti q

��Y ��

Case �� Let C be a clause of the form


p�v�� Z� � q�v�� Z��

and let nexti be the branching�time operator of q�v�� Z�� Then C is trans�
formed as follows

a� The following clause is added to P �


p��Z� � nexti q
��Z��

b� Let X be a variable that appears in the k�th position of v� and also in
the m�th position of v�� Then� the following clause is added to P �


nexti q
�
m�X� � p�k �X��

�



Case 	� For every �n����ary EDB predicate p of P a new clause of the following
form is added to P �


p��Y �� p�X�� � � � � Xn� Y �� p
�
� �X��� � � � � p�n �Xn��

Case 
� The transformation of the goal clause


� p�a�� � � � � an� Y ��

results to a set of n new unit clauses� which are added to P �


first p�i �ai��

for i � �� � � � � n� The new goal clause G� is


� first p��Y ��

Example 	� Consider the program P � obtained in Example � together with the
goal clause �G�� where the predicates e� f and g are EDBs�

�G� 
 � p�a� �� Y��

Transforming P � � fGg we get the new goal clause G�


� first p��Y��

and the program P �


first p�
�
�a��

first p�
�
����

p��Z�� next� q
��Z��

next� q
�
�
�Y�� p�

�
�Y��

next� q
�
�
�W�� next� e

��W��
next� e

�
�
�X�� p�

�
�X��

q��Z�� next� f
��Z��

next� f
�
�
�R�� next� p

��R��
next� p

�
�
�Y�� q�

�
�Y��

next� p
�
�
�W�� q�

�
�W��

p��Z�� next� g
��Z��

next� g
�
�
�Y�� p�

�
�Y��

next� g
�
�
�X�� p�

�
�X��

e��Y�� e�X� Y�� e�
�
�X��

f��Y�� f�X� Y�� f�
�
�X��

g��Z�� g�X� Y� Z�� g�
�
�X�� g�

�
�Y��

The correctness of the transformation algorithm is established by the follow�
ing theorem�

Theorem �� Let P be a simple pc�Datalog program� D a database and � p�a��
� � � � an� Y � be a goal clause� Let P � be the Branching Datalog program obtained
by applying the transformation algorithm to P � f� p�a�� � � � � an� Y �g� Then
first p��b� � TP�

D
� � i� p�a�� � � � � an� b� � TPD � ��

� Re�nements of the Transformation

We now demonstrate that the target program obtained by the above trans�
formation technique can be further optimized by taking into account speci�c

�



characteristics of the source and target programs� The optimizations presented
in this section are similar in spirit to the ones obtained in �����

�a� All unary predicates in the resulting program that correspond to EDB pred�
icates of the original program �and the clauses de�ning them in P �� can be
eliminated using unfolding ���� For more details see �����

Example 
� Applying this improvement to P � of Example � we get


� first p��Y��
first p�

�
�a��

first p�
�
����

p��Z�� next� q
��Z��

next� q
�
�
�Y�� p�

�
�Y��

next� q
�
�
�W�� e�X� W�� p�

�
�X��

q��Z�� f�R� Z�� next� p��R��
next� p

�
�
�Y�� q�

�
�Y��

next� p
�
�
�W�� q�

�
�W��

p��Z�� g�X� Y� Z�� p�
�
�X�� p�

�
�Y��

�b� In the presentation of the transformation we assumed that each body atom
has been assigned a di�erent next operator� However� it can be easily seen
that some of these operators may be redundant� In particular� it is not
necessary to assign a next operator to atoms whose predicate symbol appears
only once in the body atoms of P �fGg� We therefore can reformulate Cases
� and � of the transformation algorithm as follows

Case ��� From a clause of the form


p�v�� Z� � q�v�� Y �� r�v�� Z��

instead of the clauses in a�� b� and c� of the Case � of the transformation
algorithm� we now get the clauses of the following form� respectively


p��Z�� Opj r
��Z��

Opi q
�
m�X�� p�k �X��

Opj r
�
m�Y �� Opi q

��Y ��

where Opj is nextj if there is another body atom in P �fGg� with the same
predicate symbol r� otherwise Opj is empty� Similar for Opi� Case � of the
algorithm can be rede�ned in a similar way�

Example �� If we apply the above to Example �� we get the program that
follows in which all temporal operators� except the operator next�� have been
eliminated� Notice that next� cannot be eliminated since the corresponding
predicate p appears twice in P � fGg


� first p��Y��
first p�

�
�a��

first p�
�
����

p��Z�� q��Z��






q�
�
�Y�� p�

�
�Y��

q�
�
�W�� e�X� W�� p�

�
�X��

q��Z�� f�R� Z�� next� p
��R��

next� p
�
�
�Y�� q�

�
�Y��

next� p
�
�
�W�� q�

�
�W��

p��Z�� g�X� Y� Z�� p�
�
�X�� p�

�
�Y��

�c� In the branching�time transformation for Chain Datalog programs presented
in ���� it was demonstrated that temporal operators that correspond to left
recursive calls can be eliminated� This is not generally the case for the present
transformation� We can only eliminate such operators when they result from
the transformation of a clause of the following form


p�X�� X�� ���� Xn� Z�� p�X�� X�� ���� Xn� Y �� q�Y� Z��

i�e� when the head and the �rst body atom of the clause have the same
variables in the same input argument positions� Unfortunately� in the more
general case� where the occurrences of the input variables of p get �shu�ed��
this optimization can not be applied� For example� if we have the clause


p�X�Y�Z� � p�Y�X�W��f�W�Z��

the temporal operator corresponding to p�Y�X�W� cannot be eliminated�

The correctness of all the above re�nements can be easily established by
appropriately adapting the correctness proof of the transformation�

It is easy to verify that there are certain subclasses of pc�Datalog programs for
which our method produces classical unary Datalog programs �i�e� programs that
do not contain any temporal operators�� One such subclass contains each non�
recursive pc�Datalog program P in which each IDB predicate symbol appears
only once in the bodies of the program clauses in P � fGg where G is the
goal clause� Notice that the occurrences of the EDB predicates in P do not
a�ect this property as all operators introduced for these atoms� along with the
corresponding IDB predicates are eliminated by applying the re�nement �a��

� Conclusions

This paper presents an extension of the branching�time transformation to the
class of productive�consumptive Datalog programs� The new transformation pre�
serves all the desirable characteristics of its predecessor while extending signi��
cantly the class of allowable Datalog queries� Recently� the transformation of ����
was implemented and evaluated ����� We plan to extend the implementation to
the broader class presented in this paper� Moreover� we would like to investigate
further optimizations that would enhance the performance of the bottom�up
evaluation of the target program�

References

�� C� Beeri and R� Ramakrishnan� On the power of magic� The Journal of Logic
Programming� �������� � ����������� �����

�



�� M� Gergatsoulis and M� Katzouraki� Unfold�fold transformations for de�nite clause
programs� In M� Hermenegildo and J� Penjam� editors� Programming Language
Implementation and Logic Programming �PLILP����� Proceedings� Lecture Notes
in Computer Science �LNCS� 	��� pages �������� Springer
Verlag� �����

�� M� Gergatsoulis and C� Spyropoulos� Transformation techniques for branching

time logic programs� In W� W� Wadge� editor� Proc� of the ��th International
Symposium on Languages for Intensional Programming �ISLIP��	�� May 
��� Palo
Alto� California� USA� pages �	���� ���	�

�� S� Greco� D� Sacc�a� and C� Zaniolo� Grammars and automata to optimize
chain logic queries� International Journal on Foundations of Computer Science�
�������������� �����

�� J� W� Lloyd� Foundations of Logic Programming� Springer
Verlag� ��	��
�� M� A� Orgun and W� W� Wadge� Towards a uni�ed theory of intensional logic

programming� The Journal of Logic Programming� �������������� �����
�� A� Pettorossi and M� Proietti� Transformation of logic programs� In D� M� Gabbay�

C� J� Hogger� and J� A� Robinson� editors� Handbook of Logic in Arti�cial Intelli�
gence and Logic Programming� volume �� pages �����	�� Oxford University Press�
�����

	� P� Potikas� P� Rondogiannis� and M� Gergatsoulis� A Transformation Technique
for Datalog Programs based on Non
Deterministic Constructs� In A� Pettorossi�
editor� Logic Based Program Synthesis and Transformation� ��th Int� Workshop�
LOPSTR �

�� Paphos� Cyprus� November �	��
� Lecture Notes in Computer
Science �LNCS�� Vol� ����� pages ������ Springer
Verlag� �����

�� R� Ramakrishnan and J� D� Ullman� A survey of deductive database systems� The
Journal of Logic Programming� �������������� �����

��� P� Rondogiannis and M� Gergatsoulis� The branching
time transformation tech

nique for chain datalog programs� Journal of Intelligent Information Systems�
������������ �����

��� P� Rondogiannis� M� Gergatsoulis� and T� Panayiotopoulos� Branching
time logic
programming� The language Cactus and its applications� Computer Languages�
������������	� October ���	�

��� P� Rondogiannis and W� W� Wadge� First
order functional languages and inten

sional logic� Journal of Functional Programming� ������������ �����

��� P� Rondogiannis and W� W� Wadge� Higher
Order Functional Languages and
Intensional Logic� Journal of Functional Programming� ������������� �����

��� D� Sacc�a and C� Zaniolo� The generalized counting method for recursive logic
queries� Theoretical Computer Science� ������	������ ��		�

��� S� Sippu and E� Soisalon
Soininen� An analysis of magic sets and related optimiza

tion strategies for logic queries� Journal of the ACM� �������������		� �����

��� K� Tsopanakis� Implementation and evaluation of the branching
time transfor

mation for chain datalog programs� Diploma thesis� Dept� of Informatics and
Telecommunications� University of Athens� Greece� �����

��� W� W� Wadge� Tense logic programming� A respectable alternative� In Proc� of
the ��		 International Symposium on Lucid and Intensional Programming� pages
������ ��		�

�	� W� W� Wadge� Higher
Order Lucid� In Proceedings of the Fourth International
Symposium on Lucid and Intensional Programming� �����

��� A� Yaghi� The intensional implementation technique for functional languages� PhD
thesis� Dept� of Computer Science� University of Warwick� Coventry� UK� ��	��

��


