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Abstract. We propose an extension of the branching-time transforma-
tion [10] which can handle a significantly broader class of Datalog pro-
grams. The initial transformation could only be applied to Chain Data-
log, a useful but restricted class of programs. In this paper we demon-
strate that the transformation of [10] can be extended to handle all
Datalog programs that do not allow multiple consumptions of variables
in clauses. We demonstrate the correctness of the new transformation
and provide certain optimizations that further improve the programs
obtained by the transformation.
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1 Intoduction

The work presented in this paper contributes to the area of value-passing Datalog
optimizations (in which the input values of the top level goal of the source pro-
gram are propagated in order to restrict the generation of atoms in the bottom-
up computation). Such techniques have a long-standing tradition in the area
of deductive databases (as examples we should cite the counting transforma-
tion [14], the magic sets [1,15], the pushdown approach [4], and so on). Recently,
a technique that contributes to this stream of research has been proposed: the
branching-time transformation [10] uses ideas from temporal logic programming
in order to optimize Chain Datalog programs. The branching-time transforma-
tion has its roots in the area of functional programming where a similar idea
has been developed and used as an implementation technique for functional lan-
guages [19,18,12,13].

The technique of [10] applies to Chain Datalog programs, a subset of Datalog
which has found many uses in deductive databases. The syntax of Chain Datalog
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programs is somewhat restrictive in the sense that the value of a variable that
i1s produced in an atom must be consumed immediately in the next atom in
the clause; moreover, each atom has exactly two variables (one input and one
output). In this paper we raise these restrictions. More specifically, we allow
clauses in which variables that are produced in an atom must be consumed
in any subsequent atom in the clause; moreover, each atom may have many
variables (and not just two). This new class is obviously a superset of Chain
Datalog and it allows more freedom in the creation of more demanding queries.
The contributions of the paper can be summarized as follows:

— We demonstrate how the branching-time transformation can be extended to
apply to the class of productive-consumptive Datalog programs. This is a
much broader class than that of Chain Datalog programs and can certainly
allow more interesting queries to be expressed.

— The new transformation is equally simple as the one of [10]. It uses the
same target language and the programs obtained have the same desirable
properties as the ones produced by [10]. It should be noted that if one al-
lows multiple consumptive occurrences of variables, then the target language
should be enriched with additional constructs (as we demonstrate in [8]).

2 The Source Language of the Transformation

In the following, we assume a familiarity with the basic concepts behind deduc-
tive databases [9] and logic programming [5].

A Datalog program P is a finite set of function-free Horn rules. Predicates
appearing in the head of some rule in P are called IDB predicates, while those
appearing only in the rule bodies are called EDB predicates. A set D of ground
unit clauses defining the EDBs is called a database. If P is a Datalog program and
D a database then by Pp we denote the program P along with the database D.
The least Herbrand model of Pp is denoted by M (Pp) while M (p, Pp) denotes
the subset of M (Pp) containing all atoms whose predicate is p. We also use the
following notation: constants are denoted by a, b, ¢; variables by uppercase letters
such as XY, 7 and vectors of variables by v; predicates by lower case letters
such as p, q, r; also subscripted versions of the above symbols will be used. The
source language of the transformation is defined bellow:

Definition 1. A clause

Po(vo, Zn) < p1(v1, Z1), p2(v2, Z2), . .., pn(On, Zn).
with n > 0, is called productive-consumptive clause (or pc-clause for short) if:

1. FEach v;, for i = 0,...,n is a nonempty vector containing distinct variables;
moreover 41, ..., 4, are distinct variables.

2. vars(v;) Cwars(vo) U{Z1,..., Zi_1}, for 1 <i<n.

3. for every V. € wvars(vy) there exists exactly one vector v, 1 < i < n such
that V € vars(v;).

4. for every Z; with 1 < @ < n — 1, there erists eractly one vector v; with
i < j <n such that Z; € vars(v;).



A program P is said to be a pc-Datalog program if all its clauses are pc-
clauses. A goal G is of the form « q(e, 7), where e is a nonempty vector of
constants, 7 is a variable and q is an IDB predicate.

It should be mentioned here that pc-clauses are moded. More specifically, we
assume that each predicate has only one mode, i.e. each argument position is
used either as input or as output, but not both. In particular the terms wv; of
the above definition correspond to input arguments, while each Z; corresponds
to the single output argument of each atom.

Ezample 1. The following clause is a pc-clause:

++ = e N
p(X,Y,2) < q(Y,W),r(X,R),s(W,R, Z).

where the + and — signs above the variables denote the input and output argu-

ments respectively.

Definition 2. An occurrence of a variable in an input argument of the head
or in the output argument of an atom in the body of a clause will be called
productive; otherwise it will be called consumptive.

The intuition behind the class of pc-Datalog programs is that each value
produced by an atom must be consumed in exactly one atom following (not
necessarily immediately) the atom that produced it (except for the production
of the last atom which is returned to the head atom). Thus, each variable appears
exactly twice in a pc-clause. Many natural Datalog programs belong to this class;
for example, the class of Chain Datalog programs is a proper subset of this class.

Definition 3. A simple pc-Datalog program is a pe-Datalog program in which
every clause has at most two atoms in its body.

The following proposition (which can be proved easily using unfold/fold
transformations [2, 7]) establishes the equivalence between pc-Datalog programs
and simple pc-Datalog ones.

Proposition 1. Every pe-Datalog program P can be transformed into a simple
pe-Datalog program P’ such that for every predicate symbol p appearing in P and
for every database D, M (p, Pp) = M(p, Pp).

Ezample 2. Consider the following pc-Datalog program P:

(1) p(X,Y,Z) < e(X,W),p(W,Y,R),£(R,Z).
(2) p(X,Y,2) «g(X,V,2).

The corresponding simple pc-Datalog program P’ is:

(1) p(X,Y,Z) « e(X,W),q(W,Y,Z).
(E) q(W,Y,2) < p(W,Y,R), £(R, Z).
(2) p(X,Y,2) < g(X,Y,2).

P’ has been obtained from P by introducing a new definition (clause F) and
then folding clause 1 using E to obtain 1’.



Since by Proposition 1, for every pc-Datalog program we can obtain an equiv-
alent simple pc-Datalog program, for practical reasons we define the transfor-
mation algorithm on simple pc-Datalog programs.

3 The Target Language of the Transformation

The target language of the transformation is Branching Datalog which is a tem-
poral logic programming language that supports a branching notion of time.
This formalism has its roots in the Chronolog [17,6] and Cactus [11] temporal
logic programming languages. In particular, Branching Datalog programs are
Cactus programs without function symbols. Every atom in a Branching Data-
log program is preceded by a temporal reference, which is a (possibly empty)
sequence of the temporal operators first and next;, i > 0. A temporal reference
of the form first next;, - - - next;,, where k > 0, is called canonical. A temporal
reference of the form next;, - - -next;, is said to be open. A temporal atom is an
atom preceded by either a canonical or an open temporal reference. A canoni-
cal (resp. open) temporal atom is a temporal atom whose temporal reference is
canonical (resp. open). A goal in Branching Datalog is of the form « A, where
A 1s either a canonical temporal atom or an open one. A temporal clause in
Branching Datalog is a formula of the form:

HFAl,...,An.

where H Ay, ..., A, are temporal atoms and n > 0. If n = 0, the clause is said
to be a unit temporal clause. A Branching Datalog program is a finite set of
temporal clauses. A canonical temporal clause is a temporal clause in which all
atoms that occur in it are canonical. A canonical temporal instance of a temporal
clause C'is a canonical temporal clause which is obtained by applying the same
canonical temporal reference to all open atoms of C'.

Branching Datalog is based on a relatively simple branching-time logic (BTL).
In BT'L time has an initial moment and flows towards the future in a tree-like
way. The set of moments in time can be modeled by the set List(w) of lists of
natural numbers. The empty list [ ] corresponds to the beginning of time and
the list [4]¢] (that is, the list with head ¢, where ¢ € w, and tail ¢) corresponds to
the i-th alternative successor of the moment identified by the list ¢. BTL uses
the temporal operators first and next;, ¢ € w. The operator first is used to
identify the first moment in time, while next; refers to the i-th alternative suc-
cessor of the current moment in time. The syntax of BT L extends the syntax of
first-order logic with two formation rules: if A is a formula then so are first A
and next; A. The semantics of temporal formulas of BT L are given using the
notion of branching temporal interpretation [11]:

Definition 4. A branching temporal interpretation or simply a temporal in-
terpretation I of BT L comprises a non-empty set D, called the domain of the
interpretation, together with an element of D for each variable or constant sym-
bol and an element of [List(w) — 2P"] for each n-ary predicate symbol.



In the following definition, the satisfaction relation | is defined in terms of
temporal interpretations. =y, A denotes that a formula A is true at a moment
t in some temporal interpretation I.

Definition 5. The semantics of the elements of the temporal logic BTL are
given recursively as follows:

1. For any n-ary predicate symbol p and terms eg, ..., e5_1,

Erepleo, . en1) iff (I(en), ..., I(enc1)) € I(p)(2)

Er: —A iff it is not the case that =r A

':I,t ANB Zﬁ ':I,t A and ':I,t B

Fre (Vo)A iff Era/e)e A for all d € D, where the interpretation I[d/x] is
the same as I except that the variable x 1s assigned the element d.

Fre first Adff E=rpp A

e next; A dff Erppg A

If a formula A is true in a temporal interpretation I at all moments in time,
it is said to be true in I (we write =y A) and I is called a model of A.
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3.1 Semantics of Branching Datalog

When we focus on Branching Datalog programs, the interpretations we consider
are Herbrand ones. As usual, the Herbrand unwerse Up, of a program P to-
gether with a database D is the set of all constant symbols that appear in Pp.
Temporal Herbrand interpretations can be regarded as subsets of the temporal
Herbrand base Bp, of Pp, consisting of all canonical ground temporal atoms
whose predicate symbols appear in Pp and whose arguments are terms in the
Herbrand universe Up, of Pp. In particular, given a subset H of Bp,, we can
define a temporal Herbrand interpretation I by the following:

(o, yen1) €11, .- ik]) of
first next;, --- next;, p(co,...,cn1) € H

A temporal Herbrand model is a temporal Herbrand interpretation which is a
model of the program. In the rest of the paper, when we refer to a “model of a
program” we always mean a temporal Herbrand model.

Many interesting results of classical logic programming can be easily extended
to hold for Branching Datalog. The following theorem states that the least Her-
brand model of Pp consists of all canonical ground temporal atoms which are
logical consequences of Pp.

Theorem 1. Let P be a Branching Datalog program and D a database. Then
M(Pp)={A€ Bp, | Pp E A}

Next, we define a fixpoint operator for Branching Datalog.

Definition 6. Let P be a Branching Datalog program and D a database. The
operator Tp,, : 2PPp — 28Pp s defined as follows: if I is a temporal Herbrand
interpretation in 27Pp then Tp, (I) = {A| A < By, ..., By, is a canonical ground
instance of a program clause in Pp and {Bi,...,B,} C 1 }.



It is easy to prove that Tp,, is continuous and monotonic, therefore it provides
a characterization of the least Herbrand model of Branching Datalog programs.

Theorem 2. Let P be a Branching Datalog program and D a database. Then
M(PD) = lfp(TpD) = TPD T W.

4 The Transformation Algorithm

In this section we define formally the transformation algorithm.

The algorithm: Let P be a simple pc-Datalog program and G a goal clause. For
each (n 4+ 1)-ary predicate p in P, we introduce n + 1 unary IDB predicates
pi", ..., pr, p~, where p;»" corresponds to the i-th input argument of p and p~
to the (n 4 1)-th argument of p (which is the output one). The transformation
processes the goal clause G and each clause in P and gives as output a new goal
clause G* and a Branching Datalog program P*. When processing a clause in P,
the algorithm introduces branching-time operators of the form next;, ¢ € w. This
can be done, by assigning to each body atom in P a different natural number.
Then, if 7 1s the index assigned to an atom, next; is the operator corresponding to
that atom. The operators introduced in this way for a given clause are guaranteed
to be different than the operators introduced for any other clause in P.

The algorithm processes the program and goal clauses in the following way:

Case 1: Let C' be a clause of the form:
p(vo, Z) « q(v1,Y),r(vs, 7).
and let next;, next; be the branching-time operators of ¢(v1,Y) and r(v2, Z),
respectively. Then (' is transformed in the following way:
a) The following clause is added to P*:
p~(Z) « next; r~(2).
b) Let X be a variable that appears in the k-th position of vy and also in
the m-th position of v1. Then, the following clause is added to P*:
next; ¢t (X) « pi(X).
Variables appearing in both vy and v, are treated analogously.
c) If the output variable Y of ¢ appears in the m-th position of vs, then
the following clause is added to P*:
next; v} (V) « next; ¢~ (V).
Case 2: Let C' be a clause of the form:
p(vo, Z) « q(v1,7).
and let next; be the branching-time operator of ¢(vy, 7). Then C is trans-
formed as follows:
a) The following clause is added to P*:
p~(7) + next; ¢ (7).
b) Let X be a variable that appears in the k-th position of vy and also in
the m-th position of v;. Then, the following clause is added to P*:

next; ¢ (X) ep,;"(X).



Case 3: For every (n+1)-ary EDB predicate p of P a new clause of the following
form is added to P*:
p= (V) & p(X1,. ., Xo, V), pT (X1), ., 0 (X)),
Case 4: The transformation of the goal clause:
—play,...,an,Y).
results to a set of n new unit clauses, which are added to P*:
first pf(a;).
for i =1,...,n. The new goal clause G* is:
« first p~ (V).

Erample 3. Consider the program P’ obtained in Example 2 together with the
goal clause ((), where the predicates e, f and g are EDBs.
(G): +—p(a, 1,Y).
Transforming P’ U {G} we get the new goal clause G*:
— first p (Y).
and the program P*:

first p{"(a).
first p;(l).
p~(Z) + next, q~ (Z).
next, qJ (Y) « o (Y).
next, qf (W) « nexty e~ (W).
next, e{"(X) —pf (X).
q”(Z) + nexty £ (2).
nexty f{"(R) + nexts; p~ (R).
nexts py (Y) « qf (Y).
nexts py (W) « qf (W).
p (Z) «+ nexts g~ (2).
nexts g (Y) « o (Y).
nexts g (X) « pf (X).
e (Y) « e(X,Y), el (X).
£7(Y) « £(X,Y), £ (X).
g (2) + g(X,Y,2),81 (X),83 (V).

The correctness of the transformation algorithm is established by the follow-

ing theorem.

Theorem 3. Let P be a simple pc-Datalog program, D a database and + p(aq,
ooy @, Y) be a goal clause. Let P* be the Branching Datalog program obtained
by applying the transformation algorithm to P U {« p(ai,...,an,Y)}. Then
first p=(b) € Tps tw iff p(ar,...,an,b) € Tp, Tw.

5 Refinements of the Transformation

We now demonstrate that the target program obtained by the above trans-
formation technique can be further optimized by taking into account specific



characteristics of the source and target programs. The optimizations presented
in this section are similar in spirit to the ones obtained in [10].

(a)

All unary predicates in the resulting program that correspond to EDB pred-
icates of the original program (and the clauses defining them in P*) can be
eliminated using unfolding [3]. For more details see [10].

Ezxample 4. Applying this improvement to P* of Example 3 we get:

+ first p (Y).

first p;(a).

first pJ(1).

p (Z) < next, q (Z).

next; q; (Y) ¢ py (¥).

nexty g (W) « e(X, W), pf (X).
q (Z) « £(R,Z),next; p~ (R).
nexts p; (¥) ¢ a5 (¥).

nexts py (W) g (W).

p~(2) + (X, Y,2),p{ (X),p3 ().

In the presentation of the transformation we assumed that each body atom
has been assigned a different next operator. However, it can be easily seen
that some of these operators may be redundant. In particular, it i1s not
necessary to assign a next operator to atoms whose predicate symbol appears
only once in the body atoms of PU{G}. We therefore can reformulate Cases
1 and 2 of the transformation algorithm as follows:

Case 1': From a clause of the form:

p(vo, Z) « q(v1,Y),r(vs, 7).
instead of the clauses in a), b) and ¢) of the Case 1 of the transformation
algorithm, we now get the clauses of the following form, respectively:

p~(Z) « Op; r=(Z).
Opi ¢(X) + pi (X).
Op;j rH(Y) « Op; ¢~ (V).

where Op; is next; if there is another body atom in P U {G'}, with the same
predicate symbol 7, otherwise Op; is empty. Similar for Op;. Case 2 of the
algorithm can be redefined in a similar way.

Ezxample 5. If we apply the above to Example 4, we get the program that
follows in which all temporal operators, except the operator nexts, have been
eliminated. Notice that nexts cannot be eliminated since the corresponding
predicate p appears twice in P U {G}:

+ first p~(Y).
first p](a).
first pd (1).
p(2) < a7 (2).



a (W) < e(X,W) 1 (x).
q (Z) « £(R, 2), next3 p (R).
nextspz( ) < ( ).
nexts py (W) « qf (W).
P~ (2) + &(X,Y,2),p{ (X),p3 (V).

(c) In the branching-time transformation for Chain Datalog programs presented
in [10] it was demonstrated that temporal operators that correspond to left
recursive calls can be eliminated. This is not generally the case for the present
transformation. We can only eliminate such operators when they result from
the transformation of a clause of the following form:

p(Xl s Xz, sy Xn, Z) «— p(Xl,Xz, sy Xn, Y), q(Y, Z) .
1.e. when the head and the first body atom of the clause have the same
variables in the same input argument positions. Unfortunately, in the more
general case, where the occurrences of the input variables of p get “shuffled”,
this optimization can not be applied. For example, if we have the clause:

p(X,Y,Z2) < p(Y,X,W),f(W,Z).
the temporal operator corresponding to p(Y,X,W) cannot be eliminated.

The correctness of all the above refinements can be easily established by
appropriately adapting the correctness proof of the transformation.

It is easy to verify that there are certain subclasses of pc-Datalog programs for
which our method produces classical unary Datalog programs (i.e. programs that
do not contain any temporal operators). One such subclass contains each non-
recursive pc-Datalog program P in which each IDB predicate symbol appears
only once in the bodies of the program clauses in P U {G} where G is the
goal clause. Notice that the occurrences of the EDB predicates in P do not
affect this property as all operators introduced for these atoms, along with the
corresponding IDB predicates are eliminated by applying the refinement (a).

6 Conclusions

This paper presents an extension of the branching-time transformation to the
class of productive-consumptive Datalog programs. The new transformation pre-
serves all the desirable characteristics of its predecessor while extending signifi-
cantly the class of allowable Datalog queries. Recently, the transformation of [10]
was implemented and evaluated [16]. We plan to extend the implementation to
the broader class presented in this paper. Moreover, we would like to investigate
further optimizations that would enhance the performance of the bottom-up
evaluation of the target program.
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