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Abstract

Designing a good task allocation algorithm faces the

challenge of allowing high levels of throughput, so that

tasks are executed fast and processor parallelism is ex-

ploited, while still guaranteeing a low level of mem-
ory contention, so that performance does not su�er

because of limitations on processor-to-memory band-

width. In this work, we present a comparative study of

throughput and contention guarantees provided by load
balancing networks, a new class of distributed, asyn-

chronous algorithms for real-time task allocation in

shared memory multiprocessors. Load balancing net-

works generalize balancing networks, to accomodate

tasks with varying completion times.

On the theoretical side, we formulate precise and

crisp de�nitions for capturing the quality of load

balancing provided by general task allocation algo-

rithms; we use these de�nitions for formally evalu-

ating the throughput performance of speci�c construc-

tions of load balancing networks that we propose. Fur-

thermore, we introduce a formal, complexity-theoretic

measure of contention incurred by tasks with varying

completion times, and use it to analyze the contention

performance of these constructions. Our theoretical

results display precise and subtle trade-o�s between

throughput and contention performances for load bal-

ancing networks.

On the practical side, we propose an experimen-
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tal platform for evaluating the actual performance of

load balancing networks through a series of carefully

designed experiments that simulate these networks on

real shared memory multiprocessor machines. Our ex-

perimental approach encompasses a rigorous method-

ology for randomly generating tasks that are not merely

\random", but rather belong to common classes of

tasks such as periodic and sporadic. Our experimen-

tal results reveal that load balancing networks substan-

tially outperform in performance classical, centralized

methods for task allocation.

1 Introduction

1.1 Motivation{Overview

Managing the performance of distributed, real-time
computing systems is currently a serious challenge be-
cause of the complexity of these systems and the diver-
sity of new applications. In some of the simplest and
most tractable instances, real-time task allocation and
adaptive management of computational resources in
a large, heterogeneous distributed system is required
in order to enhance performance of concurrently run-
ning application programs. Traditional solutions to
task allocation problems in large scale multiproces-
sors have aimed at maximizing throughput, the rate at
which task execution is completed by processors (see,
e.g., [5, 12, 16, 18, 21]). Throughput has been previ-
ously studied in the real-time systems community as a
performance measure for real-time allocation of tasks
(see, e.g., [7, 15, 17, 19, 25]);

In this work, we propose a new approach to solv-
ing task allocation problems by introducing load bal-

ancing networks, a new class of networks that can be
used to allocate tasks to processors in a way that
computational load is balanced. Besides maximiz-
ing throughput, we are interested in minimizing con-

tention, a new measure of performance that captures
performance degradation due to simultaneous access
of shared memory; this measure has recently been
studied in the shared memory multiprocessing com-
munity (see, e.g., [1, 2, 3, 9, 11, 22]). Our work at-
tempts to join these previous research e�orts in these
two di�erent research communities by comparing and



contrasting throughput and contention performance of
load balancing networks.

1.2 Detailed Description

Load balancing networks, like balancing networks
(see, e.g., [4, 8]) are constructed from simple comput-
ing elements called load balancers, with one or two in-
puts and two outputs, connected to one another by
wires. However, while a balancing network counts
on its output wires any number of input tokens, a
load balancing network can handle any number of in-
put tasks with a speci�ed completion time and dis-
tribute their computational load evenly among its out-
put wires. Thus, balancing networks are but a special
case of load balancing networks where all tasks are
of unit completion times and outputs are ordered, al-
though in both cases tokens or tasks may arrive at
arbitrary real times, be distributed unevenly among
the input wires and propagate through the network
asynchronously.

Figure 1 provides an example of a sequential exe-
cution of a six-input, six-output load balancing net-
work. A load balancer is represented by two dots and
a vertical line. Intuitively, a load balancer is a balanc-
ing mechanism, forwarding each input task to its top
or bottom output wires, according to which of these
wires has so far accepted the largest sum of comple-
tion times of input tasks. Thus, it balances sums of
completion times of jobs on its output wires. In the
example of Figure 1, input tokens arrive on the net-
work's input wires and traverse the network one after
the other. For convenience, we have indexed them by
the order of their arrival (these indices are not used
by the network).

Load balancing networks achieve a high level of
throughput by decomposing information about pro-
cessor loads into pieces that can be processed in par-
allel. The obvious bene�ts of this are elimination
of sequential bottlenecks and reduction of memory
contention. Load balancing networks are also non-

blocking: processes that undergo halting failures or
delays while using a load balancing network do not
prevent other processes from making progress.

We use load balancers to construct and analyze load
balancing networks that reduce contention and permit
concurrent and real-time assignment of tasks to pro-
cessors. We evaluate our constructions against formal
measures of the quality of load balancing achieved.

We introduce a new formal, complexity-theoretic
measure of contention incurred by shared memory
multiprocessor algorithms that solve task allocation
problems. Our measure generalizes one proposed by
Dwork et al. [11] to accomodate tasks with varying
completion times. More speci�cally, each time a task
passes through a load balancer, we charge a (real)

number of stalls equal to its completion time to each
task that is pending at the load balancer and await-
ing to be processed. We consider a sequence of tasks
and amortize the number of stalls charged during the
passage of the tasks through the load balancing net-
work by dividing by the total sum of durations of all
the tasks. The case where all tasks are of unit com-
pletion times corresponds to the contention measure
introduced by Dwork et al. [11]. We analyze each of
our constructions with respect to the contention mea-
sure we introduce.

It is our belief that an experimental approach for
evaluating task allocation techniques is a good way to
go. To that end, we develop a simulator of a shared
memory multiprocessor machine that operates asyn-
chronously and receives tasks to be assigned to pro-
cessors. Expressing the methodology of choosing input
tasks is important in our approach { as merely a \ran-
dom" sequence of input tasks may already be \self-
balancing," whereas in real multiprocessor machines,
there is a \bursty" component where some tasks arrive
with load requirements much larger than the average
and a possible \periodic" component for long-lasting
jobs. We do not believe that experimentations with
\random" inputs are representative of the actual per-
formance. We rather believe that a good experimental
work should not only take \random" input tasks into
account, but also \highly biased" (in a speci�ed way)
as well as \periodic" (highly correlated) and mixtures
of these (see, e.g., [14] for a justi�cation of such tasks).
To make experimentation less of a \myth", we care-
fully specify our choice of input tasks and assumptions
required behind or justifying our choices. Our simula-
tions reveal that load balancing networks signi�cantly
outperform conventional task allocation techniques on
such realistic inputs.

1.3 Related Work

Aiello et al. [1] introduce the notion of a w-balancer,
which guarantees that \the output 
ows at time t are
balanced within maximumweight M of tokens output
by t" [1, Section 4]; this is a formal throughput prop-
erty of a load balancer which is satis�ed by the MIMD
shared memory implementation of it described in Sec-
tion 3. The notions of load balancer and w-balancer
are essentially identical, and the two works have been
performed independently [23] (the �rst version of our
work was publicized in June 1994).

Aiello et al. take as their performance index the
property that the output of a weight balancing net-
work isK-smooth for some constant K. De�nition 3.4
provides an explicit generalization of this property
that allows K to be any function of the maximal job.
However, apart from the imbalance between di�erent
output wires, we also consider makespan (see De�ni-
tions 3.1 and 3.2) as an index of performance.
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Figure 1: A load balancing network

Among our proposed constructions and those in [1],
the binary tree is the only one that allows the imbal-
ance to be a constant multiple of the maximum job
M (see discussion in Section 5 on improving actual
performance of the binary tree).

Aiello et al. propose the w-reverse butter
y and
(r,w)-butter
y constructions. The w-reverse butter-

y and the bitonic merger network achieve asymptot-
ically the same smoothness factor of �(M lgw), al-
though the smoothness of the bitonic merger is bet-
ter by a factor of two, and, in our opinion, it enjoys
a simpler construction. The (r,w)-butter
y employs
randomization to achieve a better smoothness factor
of �(M lg lgw) with a certain high probability.

The smoothness factor of M lgw shown for the
bitonic merger network (Theorem 5.2) can some-
times be better than the smoothness factor of �(M2)
shown for an even "larger" network, namely the en-
tire Batcher's bitonic network [1, Corollary 3.5]. This
implies that the general result on the relation be-
tween the smoothness factor of a balancing network
and its isomorphic load balancing network [1, The-
orem 4.4] might not be the strongest possible in
all cases. Clearly, Theorem 5.2 together with [1,
Corollary 4.5] implies that Batcher's bitonic network
achieves a smoothness factor of �(M minfM; lgwg).

The rest of this paper is organized as follows. In
Section 2, we present de�nitions for load balancing
criteria. In Section 3, we introduce load balancing
networks, while constructions of such networks are
presented in Section 4. Theoretical and experimen-
tal performance analyses for these constructions are
included in Sections 5 and 6, respectively.

2 Criteria for Load Balancing

We consider collections P = fp0; p1; : : : ; pn�1g and
C = fc0; c1; : : : ; cw�1g of n producers and w con-
sumers, respectively. The producers produce jobs1 at
some arbitrary rate; the jobs should be performed by
the consumers. Associated with each job j is its length
tj representing the time it takes to completion by a
consumer. Henceforth, we will abuse notation and use
tj to represent both job j and its length.

A job set X is a �nite set of jobs. A load balancing

algorithm is a one-to-many function A which takes as
input a job set X and maps each job in the job set
onto a consumer c 2 C. Any image �(X) of X under
A will be called a job assignment for X. Given a
job assignment �(X) for X, de�ne, for each i 2 [w],
�i(X) to be the sum of the jobs in the set assigned to
consumer ci; call �i(X) the load at consumer ci.

De�ne the makespan of the job set X induced by job

assignment �(X) to be the maximumover all i 2 [w] of
�i(X). Intuitively, the makespan represents the time,
under a particular assignment of jobs to processors,
at which the latest �nishing job is completed. Since
a load balancing algorithm may produce more than
one job assignments on a given job set, one would be
interested in the maximum over all of its possible as-
signements for a job set X of �(X), de�ned as the
makespan of the job set X induced by the load balanc-

ing algorithm A. Naturally, one would like to have a
load balancing algorithm that minimizes makespan as
much as possible. De�ne the makespan of job set X

to be the minimum, over all load balancing algorithms
A, of the makespan of X induced by A.

De�nition 2.1 A load balancing algorithm A mini-

1Throughout, we interchangeablyuse the terms job and task.



mizes makespan if for any job set X, the makespan of

X induced by A is equal to the makespan of X.

One may relax De�nition 2.1 by only insisting that
a certain bound holds on the makespan guaranteed by
a particular load balancing algorithm.

De�nition 2.2 For any function g : N ! N, a load

balancing algorithm A bounds makespan by g if for

any job set X, the makespan of X induced by A is at

most the image of the makespan of X under g.

De�ne the maximal di�erence of the job set X in-

duced by job assignment �(X) to be the maximumover
all pairs i and j 2 [w] of j�i(X) � �j(X)j. Intuitively,
the maximaldi�erence is a measure of the \imbalance"
between di�erent processors under a particular assign-
ment of jobs to them. The maximum, over all possible
job assignements of a load balancing algorithmA for a
job set X, of j�i(X)��j(X)j will be called themaximal

di�erence of the job set X induced by the load balanc-

ing algorithm A. Naturally, one would like to have a
load balancing algorithm that minimizes maximal dif-
ference as much as possible. De�ne the maximal dif-

ference of job set X to be the minimum, over all load
balancing algorithms A, of the maximal di�erence of
X induced by A.

De�nition 2.3 A load balancing algorithm A mini-
mizes maximal di�erence if for any job set X, the

maximal di�erence of X induced by A is equal to the

maximal job of X.

One may relax De�nition 2.3 by only insisting that
a certain bound holds on the maximal di�erence guar-
anteed by a particular load balancing algorithm.

De�nition 2.4 For any function g : N ! N, a load

balancing algorithm A bounds maximal di�erence by
g if for any job set X, the maximal di�erence of X

induced by A is at most the image of the maximal job

of X under g.

3 Load Balancing Networks

Load balancing networks are made from wires and
computing elements called load balancers, much in a
similar way balancing networks [4, 8] and sorting net-
works [10, Chapter 28] are made from wires and bal-
ancers, and from wires and comparators, respectively.

A load balancer is a computing element with two
output wires and either one or two input wires. In-
put and output wires are occupied by producers and
consumers, respectively. Producers push jobs onto the
input wires at arbitrary times, and the load balancer
outputs the jobs on its output wires to be processed

by consumers. Intuitively, one may think of a load
balancer as a job scheduler, e�ectively balancing sums
of completion times of jobs that have been output on
its output wires.

The following de�nitions are tailored for a two-
input balancer. Denote by Xi, i 2 f0; 1g, the set of
jobs ever received on its ith input wire, and similarly
by Yi, i 2 f0; 1g, the set of jobs ever output on its ith
output wire. Throughout the paper, we will abuse this
notation and use Xi (resp., Yi) as both the set of jobs
and the set of completion times of jobs ever received
(resp., output) on the ith input (resp., output) wire.
Let the state of a two-input load balancer at a given
time be de�ned as the sets of jobs on its input and out-
put wires. We can now formally state the safety, live-
ness and throughput properties for a two-input load
balancer. (1) In any state, Y0 [ Y1 � X0 [ X1 (i.e.,
a load balancer never creates output jobs), (2) given
any �nite sets X0 and X1 of jobs input to the load
balancer, it is guaranteed that within a �nite amount
of time, it will reach a quiescent state: a state in which
the union of the input sets of jobs is equal to the union
of the output sets of jobs; that is, in a quiescent state,
Y0[Y1 = X0 [X1, and (3) in any quiescent state, the
absolute di�erence j

P
Y0�
P

Y1j between sums of jobs
on the output wires is at most the maximum job ever
received on an input wire. Corresponding de�nitions
for a one-input balancer follow immmediately.

A load balancing network of input width t and out-

put width w is a collection of balancers, where output
wires are connected to input wires, having t designated
input wires x0; x1; : : : ; xt�1 (not connected to output
wires of balancers), w designated output wires y0, y1,
: : :, yw�1 (not connected to input wires of balancers),
and containing no cycles. Let the state of a balancing
network at a given time be de�ned as the collection of
the states of all its component balancers. The safety
and liveness properties of a network follow naturally
from its de�nition and the corresponding properties of
balancers.

On a MIMD shared memory multiprocessor archi-
tecture, a load balancing network is implemented as
a shared data structure, where balancers and wires
are represented by records and wires from one record
to another, respectively. Each record has three �elds:
diff is an integer variable, holding the absolute di�er-
ence j

P
Y0�
P

Y1j between sums of jobs on its output
wires; toggle is a Boolean variable signifying the out-
put wire with the currently maximumsum of jobs ever
output on it; next is a two-element array of pointers
to successor balancers. Each of the machine's n asyn-
chronous producers runs a program that repeatedly
traverses the data structure from some input pointer
(either preassigned or chosen at random) to some out-
put pointer, each time shepherding a new job through



the network. Each time a job j arrives at a load bal-
ancers, its length tj is compared to diff . If tj is found
to be greater than or equal to diff , diff is updated
to tj�diff and toggle is toggled and the job proceeds
to the corresponding next balancer according to next;
if tj is found to be less than diff , diff is updated to
diff � tj, and the job proceeds to the corresponding
next balancer, halting when it reaches a \leaf".

The limitation on the number of concurrent pro-
ducers implies a limitation on the number of jobs con-
currently traversing the network at any given time:P

t�1
i=0

P
Xi�

P
w�1
j=0

P
Yi � n. Consider an execution

of a load balancing network N entering a quiescent
state after m jobs pass through it. Each time a job
passes through a load balancer, all tokens pending at
this load balancer incur a real stall, with value equal to
the completion time of the passing job, modeling their
delay due to contention with each other. The number
of stall steps has been introduced in [11] as a measure
of contention for the special case where all jobs are
of unit completion times. The contention incurred by

the traversal of m jobs through the network N at con-

currency n, denoted cont(m;n;N ), is the maximum
number of real stalls, over all possible executions, in-
duced by an adversary scheduler. The amortized con-

tention of the network N at concurrency n, denoted
cont(n;N ), is the limit of cont(m;n;B) divided by m,
as m goes to in�nity.

Criteria for throughput guarantees of load balanc-
ing algorithms (Section 2) specialize in a straightfor-
ward way to load balancing networks and yield:

De�nition 3.1 A load balancing network N mini-
mizes makespan if for any set of job sets X0, X1,

: : :, Xt�1, the makespan of X induced by N in any

of its quiescent states is equal to the makespan of

X0 [X1 [ : : :[Xt�1.

De�nition 3.2 For any function g : N ! N, a load

balancing network N bounds makespan by g if for any

set X of job sets X0, X1, : : :, Xt�1, the makespan of X

induced by N in any of its quiescent states is at most

the image of the makespan of X0 [X1 [ : : : [ Xt�1.

under g.

De�nition 3.3 A load balancing network N mini-
mizes maximal di�erence if for any set X of job sets

X0, X1, : : :, Xt�1, the maximal di�erence of X in-

duced by N in any of its quiescent states is equal to

the maximal job of X.

De�nition 3.4 For any function g : N ! N, a load

balancing network N bounds maximal di�erence by g

if for any set X of job sets X0, X1, : : :, Xt�1, the

maximal di�erence of X induced by N is at most the

image of the maximal job of X under g.

4 Constructions

Naturally, load balancing networks are interesting
only if they can be constructed. In this Section, we
present two constructions of load balancing networks
and analyze their load balancing guarantees.

4.1 Binary Tree

Our �rst construction is extremely simple: it con-
sists of a binary tree Bw with input width one and
output width w, where w (the number of its leaves)
is a power of two; a one-input two-output balancer
occupies each of its nodes.

Observation 4.1 De�ne the function g : N ! N

by g(x) = x. Then, the network Bw does not bound

maximal di�erence by g.

Proof: We provide a counterexample. Consider a
sequential execution of the network B4 on the (or-
dered) input X = f41; 52; 43; 54; 45; 56g. It is straight-
forward to verify that Y0 = f41; 45g, Y1 = f43g, Y2 =
f52; 56g and Y3 = f54g. We have that

P
Y2�

P
Y3 =

6, but the maximum job of X is 5. For this example,
B4 does not bound maximal di�erence by g.

Observation 4.2 The network Bw does not minimize

makespan.

Proof: The counterexample used in the proof of Ob-
servation 4.1 still works. Consider a sequential ex-
ecution of the network B4 on the (ordered) input
X = f41; 52; 43; 54; 45; 56g. It is straightforward to
verify that Y0 = f41; 45g, Y1 = f43g, Y2 = f52; 56g
and Y3 = f54g. The makespan of this is

P
Y2 = 10,

which is not the minimum makespan, as at least the
following assignment would yield a smaller makespan,
9: Y0 = f41; 56g, Y1 = f52g, Y2 = f43; 45g and
Y3 = f54g. Thus, on this example, the network B4
does not minimize makespan.

On the positive side, we show by induction on w:

Theorem 4.1 De�ne the function g : N ! N by

g(x) = 2x. Then, the network Bw bounds maximal

di�erence by g.

4.2 Bitonic Merging Network

We describe the construction and show some prop-
erties of Batcher's classical bitonic network [6]; our
presentation borrows from [9].

Fix throughout w to be an integer of the form 2k+1,
for any integer k � 0. The construction of the bitonic
network S(w) uses the bitonic merger network M(w),
whose construction is described next, as a basic mod-
ule. The load balancing network M(w) : X(w) !



Y(w), called bitonic merger, is de�ned inductively as
follows. For the base case, where w = 4, M(4) is the
\cascade" of two layers:

� A layerM(4)
2 : X(4) ! Z(4) consisting of two load

balancers b
(2)
0 ; b

(2)
1 ; : : : ; b

(2)
p�1, where load balancer

b
(2)
i

receives inputs xi and x4�1�i and produces
outputs zi and z4�1�i, i 2 f0; 1g.

� A layer M
(4)

20 : Z(4) ! Y(4) consisting of two

load balancers b
(2)
up : Z

(2)
up ! Y

(2)
up , and b

(2)

down
:

Z
(2)

down
! Y

(2)

down
.

Assume inductively that we constructed M(w=2),
where w � 8; we show how to construct M(w). The
network M(w) is the \cascade" of:

� a network N (w) : X(w) ! Z(w) which is the
\parallel composition" of two networks M

(w=2)
eo :

X
(w=2)
eo ! Z

(w=2)
e and M(w=2)

oe : X(w=2)
oe ! Z

(w=2)
o ;

� a layer L(w) : Z(w) ! Y(w) consisting of w=2

load balancers b
(2)
0 ; b

(2)
1 ; : : : ; b

(2)

w=2�1
, where load

balancer bi receives inputs z2i and z2i+1 and pro-
duces outputs y2i and y2i+1, i 2 [w=2].

Notice that the construction of M(w) implies that
depth(M(4)) = 2, while for w > 4, depth(M(w)) =
depth(N (w)) + depth(L(w)) = depth(M(w=2)) + 1, im-
plying:

Proposition 4.2 For all w � 4, depth(M(w)) =
lgw.

We can show:

Theorem 4.3 The networksMw and Sw bound max-

imal di�erence by the same function g.

Theorem 4.4 For any constant c > 0, de�ne the

function gc : N ! N by gc(x) = cx. Then, the net-

work Mw does not bound maximal di�erence by gc.

Sketch of proof: By a counterexample where the
maximal di�erence will be lgw times the length of the
maximum job; as lgw is not bounded by a constant,
then there can be no constant c that bounds maximal
di�erence by gc.

By induction on w, we can show:

Theorem 4.5 For any integer w which is a power of

2, de�ne the function gw :N ! N by gw(x) = x lgw.
Then, the network Mw bounds maximal di�erence by

gw.

Theorem 4.5 implies that the network Mw, viewed
as a balancing network, is a lgw-smoothing net-
work [4].

5 Contention Analysis

In this Section, we provide an analysis of the worst-
case contention of our constructions.

5.1 The Binary Tree

Apparently, the root of the binary tree Bw will be-
come a hot-spot and a sequential bottleneck that is
no better than a centralized load balancing algorithm
using a single memory location. As all jobs go through
the root, the contention can reach the maximumnum-
ber n of concurrent jobs, n. Also, apparently, the con-
tention cannot exceed n. Hence, it follows:

Theorem 5.1 cont(n;Bw) 2 �(n)

However, it is possible to improve performance of
the network Bw by adopting a technique of combining
independent jobs passing through a load balancer in
order to achieve bene�cial utilization of \collisions";
we borrow this technique from the di�raction trees of
Shavit and Zemach [20] (see also the software combin-

ing trees [13, 24]), and we adapt it to accomodate tasks
with varying completion times as follows. A \prism"
mechanism [20] is created in front of the toggle and
diff �elds of each load balancer. The prism is dis-
tributed over many memory locations, and random-
ization is used to ensure that each pair of jobs uses
a di�erent location. A pair of jobs tj and tk \meet-
ing" at a memory location assign themselves to output
wires of the load balancer without accessing the �elds
in its implementation as follows. Each of the four
possibilities is checked (both on top or bottom out-
put wire, etc), and the one achieving the least value
for the variable diff is chosen. This mechanism en-
ables to get a highly parallel load balancer with very
low contention. We remark that, unlike the di�raction
trees of Shavit and Zemach [20] where colliding tokens
are always \di�racted", i.e., exit on di�erent output
wires, jobs are not necessarily \di�racted" through our
\prismed" load balancers: it may happen that two col-
liding jobs follow the same output wire.

5.2 The Bitonic Merger Network

The network Mw is found to guarantee better per-
formance:

Theorem 5.2 cont(n;Mw) 2 �(n lgw=w)

Sketch of proof: By exploiting the recursive con-
struction of Mw in order to derive and solve a recur-
rence relation for cont(n;Mw).

Our contention results for the networks Bw and
Mw, along with our results on the load balancing
properties of these networks, imply a subtle trade-o�
between quality of load balancing and memory con-
tention for these networks.



6 Performance

We present experimental results for evaluating the
performance of load balancing networks.

6.1 A Simulator for a Shared Memory

Multiprocessor

Processors' speeds: We take 1 and 10 to be lower
and upper bounds, respectively, on the time that a
single processor takes to move a task that it sheperds
through the network from one load balancer to the
next. In general, this time is a function of the proces-
sor's speed which may depend on factors such as cache
misses, operating system swamps or speed varying in-
structions. We simulate this behavior by assuming
that this time is uniformly distributed in the real-time
interval [1; 10]. Whenever a processor passes through
a load balancer, our software simulator chooses this
time uniformly at random, and the corresponding task

arrival time is calculated at which the task will arrive
at the next load balancer. In this way, the software
simulator produces a random sequence of task arrival
times.

Load Balancers: We take 1 and 10 to be lower and
upper bounds, respectively, on the time that a single
load balancer takes to output an input task on any
of its output wires once enabled to do so. This time
is measured from the time an input task \arrives" at
the load balancer and is assumed to be uniformly dis-
tributed in the real time interval [1; 10]. In this way,
the software simulator produces a random sequence of
task departure times.

Tasks: We consider \short" and \long" tasks, with
corresponding completion slightly varying around 1
and 100, respectively. We wish to study how perfor-
mance depends on the (reduced) relative proportion
p of these two classes of tasks, 0 � p � 1. We simu-
late relative proportion by having each processor that
sheperds a new task into the network to choose its
completion time to be \long" with probability p, and
\short" with probability 1� p. Having each processor
assigned to a unique input wire guarantees that \long"
and \short" tasks are distributed on input wires ac-
cording to their relative proportion. The case where
p = 0 will be called biased, since all tasks are biased to
be \bursty," while the case where p = 1 will be called
correlated, since it seems to correspond to the case
where there is a hidden correlation between \short"
and \long" tasks. All intermediate values of p corre-
spond to mixtures of these two cases.

Methodology: We used a benchmark of 2 � 106

tasks. Given the sequences of task arrival and depar-
ture times, the simulator identi�es the earliest dead-
line among all times in these sequences, acts accord-
ingly and continues on. The last deadline is the de-
parture time of the task last to exit the network. We

study the following measures of interest:

� Throughput: this is the ratio of 2 � 106 by the
last deadline, and it represents the number of jobs
exiting the load balancing network per unit time;

� Contention slope: this is the rate of increase of
amortized contention (as formally de�ned in Sec-
tion 5) with concurrency;

� Contention delay: this is the total time spent by
tasks bypassed by other tasks passing through the
same balancer; notice that this is di�erent from
contention, since it does neither handle nor charge
stalls, and also di�erent from total dealy since it
does not take into account \moving" costs;

We compared bitonic merger networks of di�erent
sizes (all powers of 2 from 4 to 256 including) for con-
currency levels ranging from 1 to 600.

Results: Our experimental results indicate:

1. Relative proportion of \long" and \short" tasks is
almost immaterial for all our measures of interest.

2. For su�ciently high concurrency, the larger the
network, the longer it takes for it to reach a steady
throughput state, and the larger this throughput
is.

3. For su�ciently high concurrency, all networks
reach a state of constant concurrency slope. The
larger the network, the smaller this slope is, which
means that the contention in large networks re-
mains constant as concurrency increases, and,
therefore, performance is not a�ected by further
concurrency increases.

4. Contention delay is approximately a linear func-
tion of concurrency with a coe�cient that de-
creases as the size of the network increases.
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