Treating Scalability and Modelling Human Countermeasures against Local Preference Worms via Gradient Models

Abstract.

A network worm is a specific type of malicious software that self propagates by exploiting application vulnerabilities in network-connected systems. Worm propagation models are mathematical models that attempt to capture the propagation dynamics of scanning worms as a means to understand their behaviour. It turns out that the emerged scalability in worm propagation plays an important role in order to describe the propagation in a realistic way. On the other hand human-based countermeasures also drastically affect the propagation in time and space. This work elaborates on a recent propagation model that makes use of Partial Differential Equations in order to treat correctly scalability and non-uniform behaviour (e.g., local preference worms). The aforementioned gradient model is extended in order to take into account human-based countermeasures that influence the propagation of local-preference worms in the Internet. Certain aspects of scalability emerged in random and local preference strategies are also discussed by means of random field considerations. As a result the size of a critical network that needs to be studied in order to describe the global propagation of a scanning worm is estimated. Finally, we present simulation results that validate the proposed analytical results and demonstrate the higher propagation rate of local preference worms compared with random scanning worms.

Key words: Computer worms; Gradient Worm Propagation Models; Local Preference Strategies; Scalability

Download: (PDF file)